
XojoPi
Programming the Raspberry Pi with Xojo

Friday, March 24, 2017

Copyright © 2017 Xojo, Inc.. All Rights Reserved.

XojoPi

Copyright © 2017 Xojo, Inc.

The information contained in this document is subject to change without notice.
This document contains proprietary information which is protected by copyright.

All rights are reserved. No part of this document may be photocopied, reproduced,
or translated to another language without the prior written consent of Xojo, Inc.

Raspberry Pi Book

Page

Table of Contents
Dev Center 1 ...
Raspberry Pi Book 1 ..

About Raspberry Pi 3 ..
Setting up Your Raspberry Pi 6 ...
Xojo Overview 10 ...
Remote Debugging 13 ..
Xojo Programming 17 ...
Program Structure 22 ...
OOP with Classes 31 ...
Project - Find Seltzer 36 ...
Files 44 ...
Graphical User Interfaces 47 ..
Project - Music Player 48 ..
Internet Access 52 ..
Project - Cat Pictures 54 ...
Project - Catch Xojo Game 57 ...
Web Project - Family Notes 62 ...
Interfacing Hardware with GPIO 69 ..
Project - Blinking LED 72 ..
Project - Digital Clock 81 ..
What's Next 85 ...

Page 1

Programming the Raspberry Pi with Xojo
In this book you'll learn how to set up your Raspberry Pi so you can make your own apps for it using Xojo. With Xojo
you can easily make fun text, GUI and web apps for the Raspberry Pi.

Xojo is an integrated development tool, but it is also a programming language. Xojo builds on languages such as
Visual Basic and Java to provide the fastest, easiest and most fun way for you to make your own apps for the
Raspberry Pi. Xojo uses safe programming patterns (strong data typing, for example), is object-oriented and has
modern programming features such as introspection, extension methods and delegates. Programming with Xojo is
fast, easy and most importantly, fun!

Although maybe you haven't heard of it before, Xojo has been around for many years. Since 1998, in fact. Xojo was
originally called REALbasic, then eventually Real Studio, but the programming language remains largely the same.

Xojo feels familiar to programmers who have used other languages such as Visual Basic and Java because it uses a
similar object-oriented programming model, with similar data types and constructs. Xojo is also friendly to new
programmers. A big problem with most programming languages is that they are overcomplicated and overwhelm
those new to them. Xojo has a powerful, integrated code editor with auto-complete that makes it easy to learn the
language. The Xojo IDE is also incredibly easy to use, making experimentation (one of the best ways to learn) fast
and fun.

Xojo is a great programming language for creating all types of apps for your Pi, from simple "hello, world" that teach
you how to program to apps that can control hardware connected to the Raspberry Pi. We can't wait to see what you
create with Xojo and your Raspberry Pi!

Table of Contents
About Raspberry Pi1.
Setting Up Your Raspberry Pi2.
Xojo Overview3.
Remote Debugging4.
Xojo Programming5.
Program Structure6.
OOP with Classes7.
Project: Find Seltzer Text Adventure8.
Files9.
Graphical User Interfaces10.
Project: Music Player11.
Internet Access12.
Project: Cat Pictures13.

Page 2

Project: Catch Xojo Game14.
Web Project: Family Notes15.
Interfacing Hardware with GPIO16.
GPIO Project: Blinking LED17.
GPIO Project: Digital Clock18.
What's Next19.

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

Raspberry Pi Book

Page 3

About Raspberry Pi
First introduced in 2012, the Raspberry Pi is a tiny computer about the size of a deck of playing cards. It was created
by the Raspberry Pi Foundation with the goal of making computing more accessible to everyone.

The Raspberry Pi itself is sometimes referred to as a "single-board" computer and although it is truly tiny, it packs
quite a lot of power. There are currently several models of Raspberry Pi, all of which use some variant of the ARM
CPU that is often seen in smartphones:

Raspberry Pi (not compatible with Xojo)●

Raspberry Pi 2 (compatible with Xojo)●

Raspberry Pi 3 (compatible with Xojo)●

Raspberry Pi Zero (not compatible with Xojo)●

The original Raspberry Pi is no longer available. Its relatively slow and underpowered CPU make it unsuitable for use
with Xojo.

The Raspberry Pi 2 is a much faster version of the original Pi that shares the same ports and general configuration. It
sells for around $35 (USD).

In 2016, the Rasperry Pi 3 was introduced as a faster version of the Pi 2 with built-in wifi and Bluetooth. It also sells
for $35 (USD).

The Raspberry Pi Zero is an even tinier computer (about the size of a stick of gum) that is approximately the speed
of the original Raspberry Pi. It's weaker CPU makes it unsuitable for use with Xojo so will not be discussed in this
guide.

As of March 2017, the Raspberry Pi Foundation has said that over 12.5 million of the various models have been sold.

What Can You Do With It?
The Raspberry Pi is a real computer, so you can do whatever you want with it! Most people typically install a version
of Linux on it (Raspbian is most common). After doing so you can run and install lots of apps and even create your
own apps for it. You'll learn about how you can use Xojo to do this in a bit.

In addition to creating apps, the Raspberry Pi makes it easy to interface hardware devices to it. In particular, the
Raspberry Pi has a General Purpose Input/Output (GPIO) port that makes it possible to directly wire your own
hardware to it.

The Raspberry Pi also has relatively low power requirements, so it can be run on batteries or be left on 24/7 without
worrying about excessive electricity usage.

The Pi has a few limitations over a standard computer that are helpful to keep in mind. First, it uses an SD card for
file storage in place of a hard drive or SSD. This means that file access can be noticably slower than a typical
computer. In addition, the Pi has a relatively small amount of RAM that cannot be upgraded (1GB), which somewhat
limits the size and scope of apps that you will want to run on it.

Raspberry Pi Book

Page 4

The Hardware
Xojo is compatible with the Raspberry Pi 2 and Pi3 models.

Both the Raspberry Pi 2 and Raspberry Pi 3 models share similar hardware. Below is a picture of the Raspberry Pi 2
hardware with the various ports and interfaces labeled:

GPIO Pins
The Raspberry Pi has a 40-pin connector that is referred to as the GPIO (General Purpose Input/Output). With these
pins you can connect hardware devices that you build directly to the Pi so you can control them using software that
you make with Xojo.

The GPIO pins and their usage are described in the upcoming chapter: Interfacing Hardware with GPIO.

USB Ports
The Raspberry Pi has four USB ports that you can use to connect things such as a mouse, keyboard, wifi dongle (if
necessary), external drive, etc.

Ethernet Port
The Ethernet port is used to directly connect the Pi to a wired network. This can provide faster network access than

Raspberry Pi Book

Page 5

using wifi.

Audio/Visual Port
The AV port is a 1/8" (3.5mm) jack that can toggle between outputting composite video or stereo audio.

HDMI Port
The HDMI port can be used to connect your Pi to a display or television. It also outputs audio.

Power Port
The power port is a micro-USB port that is only used to provide power to the Pi.

Micro SD Card Slot
The microSD card slot is actually underneath the Pi board. The Pi boots from the microSD card using the OS you
have installed on it.

Display Port
The display port is used to connect Pi-specific display devices such as LCD displays or touchscreen displays.

Camera Port
The camera port is used to connect Pi-specific camera devices, such as webcams.

Where to Purchase
Xojo recommends you purchase your Raspberry Pi as a kit through out partner, CanaKit. With The Complete Starter
Kit you get the Pi itself, a case, power supply, heat sink and HDMI cable. But more importantly you also get a coupon
code for a free license of the Raspberry Pi edition of Xojo. This edition lets you create console (text based apps) for
your Raspberry Pi.

http://www.canakit.com

Raspberry Pi Book

Page 6

Setting up Your Raspberry Pi
Installing Raspbian
For use with Xojo, you will want your Pi to use the Raspbian operating system. Raspian is a version of Debian Linux
that has been optimized for the Pi. If you purchased a Pi kit, then it may have already come with an SD card that has
Raspbian pre-installed. If so, you can just insert the SD card.

If you are setting things up yourself, then you'll want to download Raspbian and install it onto your SD card. A 32GB
card is a reasonable size that gives you plenty of space to install other apps.

You can download the the latest version of Raspbian from the official Raspberry Pi site:

https://www.raspberrypi.org/downloads/raspbian/

You should download the "RASPBIAN JESSIE WITH PIXEL" file.

Installing the operating system onto the SD card varies by the operating system of the computer you are currently
using. For specific steps you should again refer to the official Raspberry Pi docs for your OS:

Windows●

Mac●

You might also want to try the simpler ApplePi Baker app to help make SD cards.●

Linux●

Once your card is all set up, you can insert it into the Raspberry Pi. At this point you should also connect a display
(an HDMI TV works well), USB keyboard and USB mouse. Now you can connect the power to boot the Pi.

The Pi does not have a power switch. It turns on automatically when connected to power.

Follow the on-screen instructions to install Raspbian. When it is finished, your Pi will boot to the Pixel desktop. This
screenshot shows the Pixel desktop with the status panel moved from its default at the top of the screen to the
bottom:

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
http://www.tweaking4all.com/software/macosx-software/macosx-apple-pi-baker/
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md

Raspberry Pi Book

Page 7

Be sure to play around with the Pi to get a feel for how it works. Be sure to try out the pre-installed apps.

Connect to Network
At this point, you should make sure your Pi is connected to your network (usually wi-fi). If you were not prompted to
connect to wi-fi, click the wi-fi icon in the main status bar and enter your network connection information. Once you
are connected to the network, make a note of the IP address. This is an example of an IP address you might see on
your home network: 10.0.1.11.

Keep in mind that this IP address could change when your Pi reboots depending on how your wi-fi router hands out
IP addresses. Unless your Pi is offline for a long period of time, it will probably keep the same IP address. If you need
to find the IP address, you can always boot up again while connected to a display or use a LAN scanning tool to find
your Pi on the network after it auto-connects.

Next you should go to the Pi Configuration (Pi menu->Preferences->Raspberry Pi Configuration) to enable
connections using both SSH and VNC. This will allow you to remotely connect to the Pi desktop.

Raspberry Pi Book

Page 8

Connecting Remotely
To be able to use your Pi with Xojo, you'll want to be able to connect to it remotely from your main computer. This
allows you to transfer your apps to it so that you can run and test them. You'll want to make sure your Pi is powered
on an connected to the network. You do not need to leave the display, keyboard or mouse connected.

SSH
The first method you can use to connect remote is something called "ssh". This standards for "secure shell" and
provides a text-based way for you to connect to the Pi. To connect using ssh, you simply start a terminal (or
command shell) on your computer and type the command to connect using ssh. For example on macOS you would
use this command:

ssh pi@10.0.1.11

You'll be prompted for the password for the "pi" user, which is "raspberry" if you haven't changed it.

When you are connected using ssh, the terminal commands now work as if you are running terminal directly on the
Pi. You can use commands such as "ls" to list the files in a folder and the "cd" command to change to different
folders.

You can run Xojo console apps that have been copied to the Pi by switching to the folder containing the app and
typing its name like this:

Raspberry Pi Book

Page 9

./MyApp

SFTP
The next thing you'll want to be able to do is to copy files to your Pi from your main computer. This is how you get
your finished apps that you make with Xojo onto the Pi.

To do this, you will use somethingn called SFTP or "Secure File Transfer Protocol". There are lots of free and paid
SFTP apps that you can use for this. Common ones include FileZilla and CyberDuck.

With your SFTP app, add a connection for your Pi and use the same credentials that you used to connect using ssh.
Once you are connected you'll be able to see the files on the Pi. By using the SFTP app you can select (or drag) files
from your main computer and they will be copied to the Pi. Keep in mind that copying files is not instantaneous and
it may take several seconds for files to copy depending on both their sizes and the speed of the SD card you are
using on the Pi. In most cases files should transfer in under 30 seconds.

VNC Screen Sharing
The final way to connect to your Pi is to use VNC screen sharing. This lets you interact with the Pi desktop from
within a window on your main computer. Any VNC client works, such as RealVNC. On macOS you can use the built-in
screen sharing that is available from the Finder (Select Go->Connect to Server).

When prompted, enter the connection information. The URL is typically:

vnc://10.0.1.11:5901

Because you are connecting to the UI over the network, it won't be as fast as when you have the Pi directly
connected to an HDMI display, but this does make it easier to use the Pi without having to keep it connected to its
own keyboard, mouse and display.

Now that your Pi is set up and you know how to connect to it, you are ready to start learning about how you can use
Xojo to make your own Pi apps.

Raspberry Pi Book

Page 10

Xojo Overview
The sections in this guide will give you an overview of Xojo, its programming language and some useful framework
features. To learn about all the features that Xojo has to offer, be sure to read the complete User Guide. If you have
never done any programming, you may also find the Introduction to Programming with Xojo book useful.

As mentioned earlier, Xojo is an integrated tool, but it is also a programming language. It can make many types of
apps for Raspberry Pi (but also for Windows, MacOS, Linux, iOS, and web).

You you haven't already done so, you should first download and install Xojo on your primary computer:

http://www.xojo.com/download

Xojo IDE
Xojo is an integrated development environment, which means that you write your code and design your user
interface using a single, integrated tool.

When you first start Xojo the Project Chooser is displayed. Here you can choose the type of project you want to
create. Depending on your license, you can create Console, Desktop or Web projects for the Raspberry Pi. The
simplest type of project to start with is the Console project, so click on "Console" in the Chooser and enter the name
"HelloWorld" for the Application Name.

Click OK to open the main Xojo workspace window.

You are now going to make a simple app that will display "Hello, World!" when the app is run. Xojo programming is
event based and the code you write runs when certain events occur. In the case of a console app, the Run event is
called when the app starts. So the first thing you'll want to do is add the Run event to your app.

Click on App in the Navigator (the area on the left). In the Command Bar you'll see a button with a "+" appear. Click
it to show the Add menu and select "Event Handler". In the list, choose the "Run" event and click OK.

http://developer.xojo.com/userguide
http://www.xojo.com/learn
http://www.xojo.com/download

Raspberry Pi Book

Page 11

Now you'll see the Code Editor where you can type your Xojo code. Since you don't really know any Xojo code yet,
this will be kept as simple as possible. Enter this code:

Print("Hello, World!")

The Print command is used to display text to the terminal window. This command takes a parameter that is the text
to display. The above code passes the text "Hello, World!". Text in Xojo always needs to be enclosed with quotation
marks.

You should now save your project (File->Save) with the name "HelloWorld".

After saving the project, you'll want to build it for the Raspberry Pi. To do so you need to go to the Build Settings
that are shown in the Navigator on the left. Select the item that says "Linux".

Why select Linux? Because The Raspbian OS used by the Raspberry Pi is a Pi-specific version of
Linux.

In the Inspector that appears (on the right-hand side), change the value in the Architecture property from "x86 32-
bit" to "ARM 32-bit", which is the CPU used by the Raspberry Pi and Raspian.

Now you can click the "Build" button on the toolbar to build an app that you can transfer to the Pi. You may also
want to save again.

As shown in the previous section, you can now use SFTP to transfer the app to your Pi. Start your SFTP client,
connect to the Pi and select the HelloWorld folder containing the app you just built and copy it to the Pi at a location
you can easily find. Usually you'll want to put it in the main user's Documents folder.

Be sure you copy the entire folder containing both the app itself and the Libs folder!

Raspberry Pi Book

Page 12

After the app has transferred, you can now use ssh to connect to the Pi. In the terminal window, navigate to the
location where you copied the HelloWorld app folder. For example, if you copied it to the user's documents folder,
then you can use the CD command like this:

cd ~/Documents/HelloWorld

You can use the "ls" command to list the files to verify that they were copied over correctly. To run the app, use this
command:

./HelloWorld

The "./" that precede the app name are important because it tells the terminal that the app is in
the current folder.

You should see "Hello, World!" appear in the terminal.

Congratulations! You've made your first Raspberry Pi app using Xojo!

Raspberry Pi Book

Page 13

Remote Debugging
In the "Hello World" example, you manually transferred the built app to the Pi in order to run and test it. That
process works fine and is necessary for when you want to install finished versions of your app on the Pi. But for
testing, it can get a bit tedious to have to manually build and copy to the Pi each time you want to run and test.

Fortunately, Xojo has a built-in feature that can make this much easier: the Remote Debugger.

The Remote Debugger is a small program you run on the Pi that Xojo communicates with. When you want to Run
your project on the Pi, you click Run Remotely from within Xojo to have your app automatically built for and
transferred to the Pi in one quick and easy step.

The Remote Debugger is described in full in the User Guide, but this brief overview should allow you to get the
Remote Debugger up and running on the Pi quickly.

Currently you can Remote Debug to the Raspberry Pi from the Xojo IDE running on MacOS or
Linux. Windows support will be added in a future version of Xojo.

Set up the Remote Debugger on the Pi
The Remote Debugger is included in your Xojo installation. Go the the installation folder and then find this file:

Extras/Remote Debugger Desktop/Linux ARM.zip

Copy this file to your Raspberry Pi and unzip it. Use SFTP to copy the file as described in Setting up Your1.
Raspberry Pi.
On the Pi, find the ZIP file you copied over, right-click on it in the File Manager and select "Extract Here".2.
This creates a folder called "Remote Debugger Desktop". Open this folder and then double click the "Remote3.
Debugger Desktop" file to start the Remote Debugger.
In the Remote Debugger, go to the Edit menu and select Options. Enter a name for your Pi in the "Name:"4.
field.
In the Download Location section click Choose and choose a location for your debug apps to be copied. Using5.
the Desktop works for most people.
Click OK to save these changes.6.

http://developer.xojo.com/userguide/remote-debugging

Raspberry Pi Book

Page 14

Tell Xojo your Pi is a Remote Debugging Host
Now you can start Xojo on your development machine and add the Pi as a Remote Debugging host.

Open the Xojo Preferences and click the Debugging panel.1.
In the Remote Debugging Hosts section, click the Add button to add your Pi. It's likely your Pi shows up as an2.
auto-discovered remote machine. If it does, just select it and click OK.
If it does not show up you'll need to manually add it by entering a name and the IP address of the Pi (which is3.
displayed in the Remote Debugger running on the Pi if you need to go back to find it).
Click OK to save the changes.4.

Raspberry Pi Book

Page 15

Run an App on the Pi
It's now time to try running a Xojo app on the Pi.

Open the "Hello World" project you created in Xojo Overview.1.
In the Build Settings section of the Navigator, click on Linux. Change the Architecture in the Inspector to "ARM2.
32-bit".
Now click the Project menu, go to "Run Remotely" and choose your Pi that is listed there. This builds your app3.
for Pi and transfers it to the Pi.
A desktop app will automatically run, but you have to manually start a console app (such as this HelloWorld4.
example). To manually start a console app, go to the Pi (using ssh, VNC or directly use it), open the Terminal
and navigate to the location containing the transferred app. This will be the "Download Location" that you
selected in the Remote Debugger Stub on the Pi. For example, if you chose the Desktop, then you can
navigate to the folder by using: cd ~/Desktop/DebugHelloWOrld. Once you are in the directory, you can run
the console app like this:

./DebugHelloWorld

The prefix "Debug" is added to the beginning of your app name when debugging.

While your app is running on the Pi, you can use Xojo to debug it. You app will stop at breakpoints allowing you to

Raspberry Pi Book

Page 16

view variables and other information just as you can when you are debugging normally.

Raspberry Pi Book

Page 17

Xojo Programming
This section covers some of the Xojo programming language data types that you'll want to know to get started
programming your Pi.

To write code you use the Code Editor, which is essentially a text editor specifically designed for writing and editing
Xojo code. Your code consists of a series of lines, with each line containing Xojo language commands. Like with any
text editor, the text you write in the Code Editor does not "wrap" when you reach the end of the line. Instead the
Code Editor scrolls. You create new lines by pressing Return.

The Xojo language consists of the series of commands that you write. With Xojo you generally have one command
per line of code.

To make things easier, Xojo does not provide a big blank text editor for you to write your code. Code belongs to a
project item method or a control on a layout. If you recall from the simple "HelloWorld" example from earlier, the
code was placed in the Run event handler for the app. Event Handlers are a common place to put your code, but
you can also create your own methods to contain code. Methods can be added to nearly any project item, including
the main App object, windows, modules and classes.

You can add Event Handlers to a control in your layout by selecting the control and choosing "Event Handler" from
the Add button menu on the Layout Editor commandbar, the Insert button on the main toolbar or the Insert menu.

You can add your own methods (which can be called by other code in your app) by choosing "Method" from the Add
or Insert options.

Variables
A variable is the simplest way to store values that can be changed (or vary) by your code. All variables are defined
in your code using the Dim statement and each variable must be defined before it is used. When you define a
variable you tell it the type of data that it can contain.

A variable definition consists of four parts: the Dim keyword, the variable name, the As keyword and the data type.
This is also often referred to as a "variable declaration". Here is an example variable declaration:

Dim age As Integer

There are several simple, built-in data types: Text (String is also used), Integer, Double, Currency, Boolean,
and Color. Data Types are covered in the Data Types section below. Or you can refer to Using Data Types in the
User Guide.

Once you have declared a variable, you can assign it a value:

Dim age As Integer
age = 42

http://developer.xojo.com/userguide/code-editor
http://developer.xojo.com/dim
http://developer.xojo.com/data-types
http://developer.xojo.com/userguide/using-data-types$Text
http://developer.xojo.com/userguide/using-data-types$Integer
http://developer.xojo.com/userguide/using-data-types$Double
http://developer.xojo.com/userguide/using-data-types$Currency
http://developer.xojo.com/userguide/using-data-types$Boolean
http://developer.xojo.com/userguide/using-data-types$Color
http://developer.xojo.com/userguide/using-data-types
http://developer.xojo.com/userguide/using-data-types

Raspberry Pi Book

Page 18

Variables can be declared anywhere within a method (or event), as long as the declaration precedes its first usage.

A variable can be accessed only within the method (or event) in which it was declared. When the method is finished,
the memory that was used to store the variable’s value becomes available for other uses. This means that another
method in the application cannot access the variable value.

The term scope is used to describe where something, such as a variable, can be accessed. Variables and constants
declared within methods have what is called a local scope because they are locally available only to the method.
Thus these are also referred to as local variables.

Data Types
Xojo is a strongly-typed programming language. This means that you must specify the type of every variable you
create. Strongly-typed programming languages are easier and safer to use because the compiler can inform you of
programming mistakes in variable usage before they make it into your app, reducing the chance of bugs.

Boolean
Boolean is one of the simplest data types. It can only contain one of two values: True or False (the default). This is
how you declare a Boolean variable:

Dim b As Boolean

The special keywords True and False are used to change the value of a Boolean variable. If you want to declare a
Boolean variable and assign it to True, you can do so in one step:

Dim b As Boolean = True

Boolean variables can also be assigned the result of a Boolean expression. A Boolean expression is an expression
that evaluates to True or False. For example, this code sets a variable to True or False depending on whether an
Integer value is greater than 5:

Dim i As Integer = 10
Dim b As Boolean
b = (i > 5) ' b gets set to True

Text
Text stores its text as Unicode.

The maximum size of Text is limited only by available memory. To declare a variable containing Text:

Dim t As Text

http://developer.xojo.com/boolean

Raspberry Pi Book

Page 19

The default value of text is simply an empty text, often written as "". You can also check if text is empty using
the Empty method:

Dim t As Text
If t.Empty Then
 ' Do something if text is empty
End If

You can directly assign text to the variable as part of its declaration:

Dim t As Text = "Hello, World!"

Basically, any type of characters can be stored as Text, such as: "Lucas", "12/30/2015", "42.15".

Yes, even though those last two values look like a date and a number, they are actually Text because they are a
series of characters within quotes. If you want to treat them as if they are an actual date or a number then you need
to use a specific data type for that, such as Date or Double.

Combining Text
You can combine multiple text values together by using the addition (+) operator. This concatenates the two values
together. For example:

Dim name As Text = "Lucas" ' no space at end
Dim age As Text = "12"
Dim combined As Text = name + age ' result is "Lucas11"

Remember, that text values combined in this manner are only ever concatenated, regardless of what value they
contain. For example, even if it looks like the text contains numbers, adding them will not calculate their sum:

Dim value1 As Text = "42"
Dim value2 As Text = "10"
Dim value3 As Text = value1 + value2 ' result is the text "4210", not 52

Text Management
Text has many methods that can be used to manage its contents. For example, you may want to check if a Text
variable contains another text value or you may want to remove whitespace from a text value.

To learn more about the methods that are available with Text variables, refer to the Text data type in the Reference
Guide.

String
In most cases you will want to use the Text data type, but String is sometimes useful when working with UI
controls that do not use the Text data type.

http://developer.xojo.com/text$Empty
http://developer.xojo.com/text

Raspberry Pi Book

Page 20

String stores the text in memory as bytes with an optional encoding (usually UTF-8). A String without an encoding
may or may not contain text (it could actually be binary data), which can lead to all kinds of hard-to-find bugs when
trying to display the String as text.

If you have a String variable or property, you can convert it to Text by calling the ToText method:

Dim s As String = "Hello"
Dim t As Text = s.ToText
Dim caption As Text = OKButton.Caption.ToText

Converting a String to a Text works only when the String has a known encoding. If the encoding of the String is not
known (because it was loaded from an outside source such as a file, a database or memory), then you will have to
first set the encoding using the DefineEncoding method.

Conversely, you can always convert a Text variable to a String because the text is Unicode and can always be
correctly converted.

Numbers
Xojo has separate data types depending on the type of number you need. The Integer type is used for whole
numbers (positive or negative and 0). If you need a number that contains a decimal, you can use either Double or
Currency.

Because these data types contain actual numbers, you can perform mathematical computations on them.

Integer
An Integer contains whole numbers and is declared like so (default value is 0):

Dim value As Integer

You can assign it a value when you declare it:

Dim value As Integer = 42

If you try to assign a value with a decimal to an Integer, the decimal value is truncated (not rounded) before it is
assigned. For example:

Dim value As Integer
value = 42.65 ' value will contain 42

Double
A Double is a number that can contain a floating-point decimal value. In other languages, Double may be referred to
as a double precision real number. Because Doubles are numbers, you can perform mathematical calculations on
them.

http://developer.xojo.com/defineencoding
http://developer.xojo.com/integer
http://developer.xojo.com/double

Raspberry Pi Book

Page 21

You should avoid using Double to store monetary values. As an IEEE floating-point number, there are some
decimal values that cannot be represented as a Double and this could cause rounding issues. In these
situations, use Currency instead.

The default value of a Double is 0.0:

Dim value As Double

You can also assign a value when you declare it:

Dim value As Double = 3.14

Converting Between Numbers
You can convert between numbers without any special commands, but you have to keep in mind that the numbers
may be rounded or truncated. For example, converting a Double to an Integer does not round the value:

Dim d As Double = 4.6
Dim i As Integer = d ' i = 4

Use the Round method to round a value.

You can also directly assign an Integer to a Double:

Dim i As Integer = 42
Dim d As Double = i

https://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
http://developer.xojo.com/xojo-math$Round

Raspberry Pi Book

Page 22

Program Structure
This chapter covers some of the Xojo programming language commands that you'll want to know to get started
programming your Pi.

The methods you write execute one line at a time from top to bottom, left to right. There will be times when you
want your application to execute some of its code based on certain conditions (using comparisons or boolean
expressions). When your application’s logic needs to make decisions it’s called branching. This allows you to control
what code gets executed and when. You may also want your code to execute some of its code repeatedly. This is
called looping.

If...Then...End If
The If…Then...End If statement is used when your code needs to test a boolean (True or False) expression and then
execute code based on its result. If the expression you are testing is True, then the lines of code you place between
the If...Then line and the End If line are executed, otherwise they are skipped.

If condition Then
 ' [Your code goes here]
End If

Say you want to test the Integer variable month and if its value is 1, run your code:

If month = 1 Then
 ' [Your code goes here]
End If

The part “month = 1” is a boolean expression; it’s either True or False. The variable month is either 1 or it is not 1.

Suppose you have a Button that performs an additional task if a particular CheckBox is checked. The value property
of a CheckBox is Boolean so you can test it in an If statement easily:

If CheckBox1.Value Then
 ' [Your code goes here]
End If

Remember that you can declare local variables using the Dim statement inside an If statement. However, such
variables go out of scope after the End If statement. For example:

If error = -123 Then
 Dim a As Text
 a = "Oops! An error occurred."
End If

http://developer.xojo.com/if-then-else

Raspberry Pi Book

Page 23

Label1.Text = a ' out of scope!

If you need the variable after the End If statement, you should declare it local to the entire method, not within the
If...End If statement.

While...Wend
A While loop executes one or more lines of code between the While and the Wend statements. The code between
these statements is executed repeatedly, provided that the condition passed to the While statement continues to
evaluate to True.

Consider the following example:

Dim i As Integer
While i < 10
 i = i + 1
Wend

The variable “i” will be zero by default when it is created by the Dim statement. Because zero is less than ten,
execution will move inside the While...Wend loop. The variable i is incremented by one and the loop returns to the
top where the While statement checks to see if the condition is still True and if it is, then the code inside the loop
executes again. This continues until the condition is no longer True. If the variable i was not less than ten in the first
place, the contents fo the loop are skipped entirely and execution would continue at the line of code after the Wend
statement.

Do...Loop
Do loops are similar to While loops but a bit more flexible. Do loops continue to execute all lines of code between
the Do and Loop statements until a particular condition is True. While loops on the other hand execute as long as
the condition remains True. Do loops provide more flexibility than While loops because they allow you to test the
condition at the beginning or end of the loop. The example below shows two loops; one testing the condition at the
beginning and the other testing it at the end:

Dim i As Integer
Do Until i = 10
 i = i + 1
Loop

i = 0
Do
 i = i + 1
Loop Until i = 10

The difference between these two loops is this: In the first case, the loop will not execute if the variable i is already

http://developer.xojo.com/while-wend
http://developer.xojo.com/do-loop

Raspberry Pi Book

Page 24

equal to ten. The second loop executes at least once regardless of the value of i because the condition is not tested
until the end of the loop.
It is possible to create a Do loop that does not test for any condition. Consider this loop:

Do
 i = i + 1
Loop

Because there is no test, this loop will run endlessly. You use the Exit command to force a loop to exit without
testing for a condition. However, this is generally considered poor design because you have to read through the
code to figure out what will cause the loop to end.

Do
 i = i + 1
 If i > 10 Then Exit
Loop

Now that you understand the various coding concepts, now it is time to learn more about the place where you write
you code: methods.

Methods are the building blocks of your application. The code you write most often exists in a method. A method is
one or more instructions that are performed to accomplish a specific task; an action of some sort.

There are many built-in methods. For example, the Quit method causes your application to quit. Most classes have
built-in methods. For example, the ListBox class has a method called AddRow for adding rows to it (as the name
implies). And you can of course, create your own methods.

For...Next
While and Do loops are perfect when the number of times the loop should execute cannot be determined because it
is based on a condition. A For loop is for cases in which you can determine the number of times to execute the loop.
For example, suppose you want to add the numbers one through ten to a List Box. Since you know exactly how
many times the code should execute, a For loop is the right choice. For loops also differ from While and Do loops
because For loops have a loop counter variable, a starting value for that variable and an ending value. The basic
construction of a For loop is:

Dim Counter As Integer
For Counter = 0 To 100
 ' [your code goes here]
Next

Notice that the Dim statement declares the counter as an Integer. Although an Integer is the most common way to
define the counter variable, you can also declare it as a Single or Double.

http://developer.xojo.com/for-next

Raspberry Pi Book

Page 25

In this example, the counter variable was declared in the usual way, via the Dim statement. Since counter variables
are rarely needed outside the For loop, you can also declare the counter variable right inside the For statement. In
other words, you can redo this example like this:

For Counter As Integer = 0 To 100
 ' [your code goes here]
Next

Notice that the Dim statement has been removed from the example. If you declare the counter variable this way,
you can use it only within the For loop. It goes out of scope after the For loop is finished. This is the recommended
way to declare a counter variable. Of course, if you need to read or change the value of the counter variable outside
the For loop, which is rarely necessary, you should use the Dim statement instead.

In the prior examples, the starting value and the ending value are specified as numbers. You can also use variables,
as shown in this example:

Dim startingValue, endingValue As Integer
startingValue = 0
endingValue = 100

For counter As Integer = startingValue To endingValue
 ' [your code goes here]
Next

The first time through the loop, the counter variable will be set to StartingValue. When the loop reaches the Next
statement, the counter variable will be incremented by one. When the Next statement is reached and the counter
variable is equal to EndingValue, the counter will be incremented and the loop will end.

Look back at the example mentioned earlier. You want to add the numbers one through ten to a List Box. The
following code accomplishes that:

For i As Integer = 1 To 10
 ListBox1.AddRow(Str(i))
Next

The counter variable (i in this case) is passed to the Str function to be converted to a string so that it can be passed
to the AddRow method of ListBox1.

Note: The letter “i” is commonly used as the loop counter for historical reasons. In the old FORTRAN
programming language, the letters I through N are integers by default. Therefore, FORTRAN programmers
began the practice of using those letters as counters, and in the order they appear in the alphabet. That is,
if a FORTRAN programmer needed to nest one loop in another, he would use j as the counter for the inner
loop. This convention made it easy for FORTRAN programmers to follow the logic of code that processed
multi-dimensional arrays.

Raspberry Pi Book

Page 26

By default, For loops increment the counter by one. You can specify another increment value using the Step
statement. In this example, the Step statement is added to increment the counter variable by 5 instead of 1:

For i As Integer = 5 To 100 Step 5
 ListBox1.AddRow(Str(i))
Next

In this example, the For loop starts the counter at 100 and decrements by 5:

For i As Integer = 100 DownTo 1 Step 5
 ListBox1.AddRow(Str(i))
Next

Creating Your Own Methods
Methods can be added to project items, including classes (including Windows and Web Pages) and modules. To add
a method, choose Insert ↠ Method from the menu or toolbar when the appropriate project item is selected. This
adds the method, displays a blank code editor and displays the Inspector where you can set the properties for the
method:

Method Name●

The name of the method. Just like variables, methods are given names to describe them and the same naming
rules apply.
Parameters●

Parameters are values that you pass to the method that it can then use within the method as if they were
variables. Parameters are separated by commas and are declared similarly to how you use the Dim statement:
value As Integer
value As Integer, name As Text
Return Type●

Methods that do not specify a return type are called Subroutines (or Procedures in some other languages).
Methods that specify a return type are called Functions. The Return Type can be any valid data type, including
classes.
Scope●

Scope indicates what parts of your code can call the method. Choices are Public, Protected and Private.
Public methods can be called from anywhere in your code with no restrictions.●

http://developer.xojo.com/userguide/about-xojo-programming-language$Naming Rules
http://developer.xojo.com/userguide/about-xojo-programming-language$Naming Rules

Raspberry Pi Book

Page 27

Protected methods have some restrictions, which vary depending on where the method is located (class or●

module).
Private methods can only be called by the module or class that contains the method.●

The method signature (its name, parameters and return type) also appears at the top of the Code Editor for
reference.

Using Methods

To use a method you specify its name, optionally prefixed by the module or class instance name (depending on how
the method is defined). Classes are discussed in the Object-Oriented Programming section coming up next and
Modules are discussed in the Modules section of the User Guide.

An example of a method is the ToText method on the number data types that converts the number to text:

Dim i As Integer = 42
Dim t As Text = i.ToText

Passing Parameters to Methods
Some methods, such as the ToText method shown above, are called simply with their name. But some methods
require additional information or values. This information that is passed to a method is called a parameter. A
method can have any number of parameters.

A Dictionary is a built-in class that is commonly used to store information. It has several methods to add, remove or
lookup values in it. This is how you can create a Dictionary:

Dim myDictionary As Dictionary
myDictionary.Value("Name") = "Red Sox"

This method call removes the key "Name" and its value from the Dictionary:

myDictionary.Remove("Name")

The value "Name" was passed as a parameter to the Remove method.

Methods define their parameters and specify the types for them. A method can have any number of parameters.
When passing multiple parameters, separate each one with a comma.

The Lookup method on a Dictionary takes two parameters and can be used to get a value for a key and if not
available, provide a default:

http://developer.xojo.com/userguide/modules

Raspberry Pi Book

Page 28

Dim value As Text = myDictionary.Lookup("Name", "Unknown")

In these examples, the parameters have been passed as text literals, but you can also pass variables and constants
as parameters instead:

Dim key As Text = "Name"
Dim default As Text = "Unknown"
Dim value As Text = myDictionary.Lookup(key, default)

As with variable assignment, the parameters you pass to the method must match the types of the parameters as
declared on the method.

Returning Values from Methods
Some methods return values. These methods are called Functions. When a method returns a value, the value is
passed back from the method to the line of code that called the method. For example, the method Ticks returns the
number of ticks (a tick is 1/60th of a second) that have passed since you turned on your computer. You can assign
the value returned by a method the same way you assign a value to a variable. In the example below, the value
returned by Ticks is assigned to the variable elapsed:

Dim elapsed As Double
elapsed = Ticks

Some methods require parameters and return a value. You saw this earlier with the Lookup method for a Dictionary:

Dim value As Text = myDictionary.Lookup("Name", "Unknown")

The method takes two parameters and returns a value.

You can also directly pass methods that return values to other methods:

Dim t1 As Text = "Hello, how are you?"
Dim t2 As Text = "Hello, I am fine."

Dim b As Boolean
b = t1.BeginsWith(t2.Left(5)) ' True

For a method to return a value, you just have to specify a Return Type in the method properties of the Inspector. For
example, this method definition returns an Integer:

Raspberry Pi Book

Page 29

A method can return any type, from the intrinsic data types to any class or other type you have created yourself.

Methods can also return arrays of any type. To indicate that the return type is an array, add the double parenthesis
to it. This returns an Integer array:

Debugging
When you run your apps on the Pi using the Remote Debugger, you can use the built-in Xojo debugger to watch
your code as it runs. To do this, you set breakpoints in your code. A breakpoint is an indicator that tells the
debugger to activate itself when the line of code is reached. For example, you might want to set a breakpoint at the
start of a method if you want to carefully review the code as it executes.

To set breakpoints, you click on the “dashes” that appear in the gutter of the Code Editor. Each dash indicates a
line of code that can have a breakpoint set. You can also set a breakpoint using the Project ↠ Breakpoint ↠ Turn On
menu (⌘+ on Mac, Ctrl- on Windows and Linux). The same command turns off a previously set breakpoint on the
line.

If you want to turn off all breakpoints throughout your project, use the Project ↠ Breakpoint ↠ Clear All menu. To see
all breakpoints in your project, use Project ↠ Breakpoint ↠ Show All menu to display the breakpoints in the Find
panel.

When you run your project, code execution stops when a breakpoint is reached and the Xojo Debugger displays. In
the debugger you'll see the current line of code highlighted and a list of variables in the current code block (method,

Raspberry Pi Book

Page 30

event, etc.) for you to watch.

Use the button on the command bar to control the debugger:
Pause/Resume: Use Pause to pause a running app and activate the debugger. If you are in the debugger, the●

Resume button tells your app to continue running where it left off. You can also click the Run button on the
main toolbar to Resume, select Project ↠ Resume from the menu or you can use the ⌘+R (Ctrl-R on Windows
and Linux) shortcut.
Stop: The Stop button immediately stops the running app. The app is quit immediately and no further code is●

run. You can also use the shortcut Shift+⌘+R (Shift-Ctrl-R on Windows and Linux).
Step: The Step button is used to run the code one line at a time. Each time you click Step, the highlighted●

code is executed and you remain in the debugger. If you click Step while on a method call, the method is called
and you move to the next line of code after the method call. Step is the command you use most often while
debugging. In addition to clicking the button, you can use Project ↠ Step ↠ Step Over menu command or the
shortcut Shift+⌘+O (Shift-Ctrl-O on Windows and Linux).
Step In: The Step In button works like the Step button except when you reach a method call. Instead of calling●

the method and moving to the next line of code, Step In moves you to the first line of code in the method. In
addition to clicking the button, you can use Project ↠ Step ↠ Step Into menu command or the shortcut
 Shift+⌘+I (Shift-Ctrl-I on Windows and Linux).
Step Out: If you are in a method, clicking Step Out, runs the rest of the code in the method and then stops●

when the method returns. In addition to clicking the button, you can use Project ↠ Step ↠ Step Into menu
command or the shortcut Shift+⌘+T (Shift-Ctrl-T on Windows and Linux).
Edit Code: The Edit Code button allows you to jump to the Code Editor for the current method that is in the●

debugger. Here you can edit the code (which you can not do in the code display of the debugger). However,
changes that you make to code in the Code Editor are not reflected in the currently running app. You'll need to
quit and re-run the app to see the changes you made.

You can learn more about the Xojo Debugger in the Using the Debugger topic of the User Guide.

http://developer.xojo.com/userguide/using-the-debugger

Raspberry Pi Book

Page 31

Object-Oriented Programming with Classes
In its simplest form, a class is a container of code and data much like a module. But unlike a module, a class
provides better code reuse. Classes are the fundamental building blocks of object-oriented programming.

Understanding Classes, Instances and References
Before you can use a class in your project, it is important to understand the distinction between these three
concepts: the class itself, the instance of the class and the reference to the class.
The Class The Instance
Think of the class as a template for a container of information (code and
data), much like a module. And like a module, each class exists in your
project only once. But unlike a module, a class can have multiple instances
that each contain different data.

Classes provide better code reuse because of a concept called instances. Unlike a
module, which exists only once in your application, a class can have multiple instances.
Each instance (also called an object) is a separate and independent copy of the class
and all its methods and properties.

The Class
There are many built-in classes for user interface controls such as PushButton, WebButton, Label, WebLabel,
TextField, WebTextField, ListBox, and WebListBox.

By themselves, control classes are not all that useful; they are just abstract templates. But each time you add a
control class to a layout (a window or web page) you get an instance of the class. Because each button is a separate
instance, this is what allows you to have multiple buttons on a window, with each button being completely
independent of each other with its own settings and property values.

You create classes in Xojo by choosing Class from the Insert menu or toolbar button. This is an example of a Vehicle
class that will be used in later examples:

Class Vehicle
 Property Brand As Text
 Property Model As Text
End Class

The Instance
These instances are what you interact with when writing code on the window and is what the user interacts with
when they use your application.

For example, when you drag a TextArea from the Library to a Window, you create a usable instance of the TextArea
on the Window. The new instance has all the properties and methods that were built into the TextArea class. You get
all that for free — styled text, multiple lines, scroll bars, and all the rest of it. You customize the particular instance
of the TextArea by modifying the values of the instance’s properties.

When you add a control to a window (or web page), the Layout Editor creates the reference for you automatically (it
is the name of the control).

However, when writing code you create instances of classes using the New keyword. For example, this create a new

Raspberry Pi Book

Page 32

instance of a Vehicle class that is in your project:

Dim car As New Vehicle

The Reference
A reference is a variable or property that refers to an instance of a class. In the above code example, the car
variable is a reference to an instance of the Vehicle class.

You interact with properties and methods of the class using dot notation like this:

Dim car As New Vehicle
car.Brand = "Ford"
car.Model = "Focus"

Here the Brand and Model were defined as properties of the Vehicle class and they are given values for the specific
instance. Having an instance is important! If you try to access a property or method of a class without first
having an instance, you will get a NilObjectException likely causing your app to quit. This is is one of the most
common programming errors that people make and is typically caused by forgetting the New keyword. For example,
this code might look OK at first glance:

Dim car As Vehicle
car.Brand = "Ford"
car.Model = "Focus"

But the 2nd line will result in a NilObjectException when you run it because car is not actually an instance. It is just a
variable that is declared to eventually contain a Vehicle instance. But since an instance was not created, it gets the
default value of Nil, which means it is empty or undefined.

If you are not sure if a variable contains an instance, you can check it before you use it:

If car <> Nil Then
 car.Brand = "Ford"
 car.Model = "Focus"
End If

When the variable is not Nil, then it has a valid reference. And since it is a reference, it has important considerations
when assigning the variable to another variable: When you do an assignment from one reference variable to
another, the second variable points to the same reference as the first variable.

This means the second variable refers to the same instance of the class as the first variable and is not a copy of it.
So if you change a property of the class with either variable, then the property is changed for both. An example
might help:

Dim car As New Vehicle

Raspberry Pi Book

Page 33

car.Brand = "Ford"
car.Model = "Focus"
Dim truck As Vehicle
truck = car
' truck.Model is now "Focus"
car.Model = "Mustang"
' truck.Model is now also "Mustang"
truck.Model = "F-150"
' car.Model is now also "F-150"

In this diagram you can see that the variables for both car and truck point to the same instance of Vehicle. So
changing either one effectively changes both.

If you want to create a copy of a class, you need to instead create a new instance (using the New keyword) and then
copy over its individual properties as shown below:

Dim car As New Vehicle
car.Brand = "Ford"
car.Model = "Focus"
Dim truck As New Vehicle
truck.Brand = car.Brand
trunk.Model = car.Model
' truck.Model is now also "Focus"
truck.Model = "F-150"
' car.Model remains "Focus"

When you do it this way, you get two separate instances. Changes to one do not affect the other as you can see in
these diagrams:

Raspberry Pi Book

Page 34

Adding Classes to Your Projects
Adding a class to a project is easy. To add a new class, click the Insert button on the toolbar and choose Class or
select Class from the Insert menu. This adds a new class to the Navigator with the default name (Class1 for the first
class).

Use the Inspector to change the name of the class. Like modules, classes primarily contain properties and methods.
But they can also contain many other thing such as constants, enumerations, events and structures.

Adding Properties to Classes
Properties are variables that belong to an entire class instance rather than just a single method. To add a property
to a class, use the Add button on the Code Editor toolbar, Insert ↠ Property from the menu, the contextual menu or
the keyboard shortcut (Option-Command-P on OS X or Ctrl+Shift+P on Windows and Linux). You can set the
property name, type, default value and scope using the Inspector.

To quickly create a property, you can enter both its name and type on one line in the Name field like this:
PropertyName As DataType. When you leave the field, the type will be set in the Type field.

Properties added in this manner are sometimes called Instance Properties because they can only be used with an
instance of the class. You can also add properties that can be accessed through the class itself without using an
instance. These are called Shared Properties.

Shared Properties
A shared property (sometimes called a Class Property) is like a “regular” property, except it belongs to the class, not
an instance of the class. A shared property is global and can be accessed from anywhere its scope allows. In many
ways, it works like a module property.

It is important to understand that if you change the value of a shared property, the change is available to every
usage of the shared property.

Generally speaking, shared properties are an advanced feature that you only need in special cases. For example, if

Raspberry Pi Book

Page 35

you are using an instance of a class to keep track of items (e.g., persons, merchandise, sales transactions, and so
forth) you can use a shared property as a counter. Each time you create or destroy an instance of the class, you can
increment the value of the shared property in its constructor and decrement it in its destructor. (For information
about constructors and destructors, see the section Constructors and Destructors.) When you access it, it gives you
the current number of instances of the class.

Adding Methods to Classes
To add a method to a class, use the Add button on the Code Editor toolbar, Insert ↠ Method from the menu, the
contextual
menu or the keyboard shortcut (Option-Command-M on OS X or Ctrl+Shift+M on Windows and Linux). You can set
the method name, parameters, return type and scope using the Inspector.

When typing the method name, the field will autocomplete with the names of any methods on its super classes.
Methods added in this manner are called Instance Methods because they can only be used with an instance of the
class.
You can also add methods that can be accessed through the class itself. These are called Shared Methods.

Raspberry Pi Book

Page 36

Project - Find Seltzer
One of the best ways to learn how to make apps is by making apps. Now that you have an understanding of Xojo
and its programming language, you are going to make a simple game called "Find Seltzer". Find Seltzer is a simple
console text adventure game where the goal is to move through the rooms of a house and find where Seltzer the
cat is hiding. You play the game by typing commands to move from room to room where you examine the items in
the room.

To get started, create a new Console project and name it "FindSeltzer".

This project uses two classes to track the room and the stuff contained in the rooms. The classes are Room and
Stuff.

Stuff Class
First you'll want to create the Stuff class since it is used by the Room class. In Xojo, select Insert ↠ Class and name
the class "Stuff". This class has two properties, which you can add by choosing Add ↠ Property from the command
bar for the class:

SeltzerIsHere As Boolean●

StuffName As String●

Make sure the scope of these properties is set to Public. The SeltzerIsHere property is set to True for the stuff that
seltzer is hiding under. It is randonly set to something when a new game starts. StuffName is simply the name of the
stuff, such as "Table" or "Bed". That's it for the Stuff class.

Room Class
Now you can add the Room class. This class is a bit more complicated because it has properties to track information
about the room and methods for moving and looking at what is in the room. Start by adding these properties to
Room (make sure their scope is set to Public):

MoveableDirections As Dictionary●

RoomName As String●

RoomStuff() As Stuff●

MoveableDirections is a Dictionary that contains the directions that you can move to. For example, if you are in the
Kitchen you may want to allow the user to move west to get to the playroom. This dictionary is populated as part of
the game setup.

RoomName is simply the name of the room, such as "Kitchen" or "Playroom".

RoomStuff is an array of Stuff classes. Because it is an array it allows a room to have multiple things in it.

Now on to the three methods used by Room. The first method is a Constructor. Add it by selecting Add->Method
from the command bar for the class. In the Inspector, you can choose "Constructor" from the popupmenu or just
type it. The Constructor is called each time a new Room is created and its purpose is to simply initialize the
Dictionary so it's code is this:

Raspberry Pi Book

Page 37

MovableDirections = New Dictionary

The next method is LookAt. This method takes the name of something to look at (a Stuff). If the item is in the room,
it checks if Selzter is hiding there. If Seltzer is there text is displayed and the method returns True, which means you
won. If Seltzer is not there, text is displayed and it returns False. Here is the code:

Function LookAt(noun As String) As Boolean
 For Each s As Stuff In RoomStuff
 If s.StuffName = noun Then
 app.score = app.score + 1
 If s.SeltzerIsHere Then
 Print "You found Seltzer!"
 Return True
 Else
 Print "There is nothing to see."
 Return False
 End If
 End If
 Next

 App.Sorry(noun)

 Return False
End Function

Remember, when you add methods in Xojo, you do not type the method header. That's the part
that starts with "Function". Instead you add a method to the class and specify its name and
parameters in the Inspector.

The final method is the Move method, which looks up if you can move the the specified room. If so, then the new
room is returned.

Function Move(direction As String) As Room
 If MovableDirections.HasKey(direction) Then
 Return MovableDirections.Value(direction)
 Else
 Return Nil
 End If
End Function

That's it for the Room class.

Game Code
The rest of the code is what runs the game and it is on the App object. First, there are three properties for tracking
the state of the game:

Raspberry Pi Book

Page 38

CurrentRoom As Room●

Score As Integer●

CurrentRoom is the current room the user is in. Score is the count of moves it takes to find Seltzer.

There are four methods in the class that are used to play the game. The simplest method is called Sorry and it is
called when a command is not recognized:

Sub Sorry(command As String)
 Print "Sorry, I don't understand '" + command + "'."
End Sub

The ShowCommands method is called when the user types "?" or "help" and it displays the commands that the
game recognizes:

Sub ShowCommands()
 Print "Available commands:"
 Print " Go N/E/W/S/U/P : Move north, east, west, south, up down"
 Print " Look noun: Look an item in a room"
 Print " Examine noun: Look an item in a room"
 Print " Quit: Quit the game"
 Print " ? or Help: Show this text"
 Print ""
End Sub

The DisplayRoom method displays the details for the current room and is called when the user types "look":

Sub DisplayRoom()
 Print "You are at the " + CurrentRoom.RoomName + "."
 Print ""

 If CurrentRoom.RoomStuff.Ubound >= 0 Then
 For Each s As Stuff In CurrentRoom.RoomStuff
 Print "There is a " + s.StuffName + "."
 Next
 Print ""
 End If

 Dim move As String = "You can move "
 For Each d As String In CurrentRoom.MovableDirections.Keys
 move = move + d + " "
 Next
 Print move.Trim + "."
End Sub

The largest method in the game is the Setup method. It creates all the stuff, the rooms and the map for the house. It
then randomly assigns Seltzer to be in one of the items in a room:

Raspberry Pi Book

Page 39

Sub Setup()
 Dim rooms() As Room

 ' Front Porch
 Dim door As New Stuff
 door.StuffName = "Door"

 Dim frontPorch As New Room
 frontPorch.RoomName = "Front Porch"
 frontPorch.RoomStuff.Append(door)
 rooms.Append(frontPorch)

 ' Start at front door
 CurrentRoom = frontPorch

 ' Downstairs hallway
 Dim hallway As New Room
 hallway.RoomName = "Downstairs Hallway"
 rooms.Append(hallway)

 ' Kitchen
 Dim table As New Stuff
 table.StuffName = "Kitchen Table"

 Dim kitchen As New Room
 kitchen.RoomName = "Kitchen"
 kitchen.RoomStuff.Append(table)
 rooms.Append(kitchen)

 ' Playroom
 Dim condo As New Stuff
 condo.StuffName = "Cat Condo"

 Dim playRoom As New Room
 playroom.RoomName = "Playroom"
 playroom.RoomStuff.Append(condo)
 rooms.Append(playRoom)

 ' Living room
 Dim couch As New Stuff
 couch.StuffName = "Couch"

 Dim livingRoom As New Room
 livingRoom.RoomName = "Living Room"
 livingRoom.RoomStuff.Append(couch)
 rooms.Append(livingRoom)

 ' Upstairs hallway

Raspberry Pi Book

Page 40

 Dim upstairHallway As New Room
 upstairHallway.RoomName = "Upstairs Hallway"
 rooms.Append(upstairHallway)

 ' Mom&Dad's Bedroom
 Dim gate As New Stuff
 gate.StuffName = "Gate"

 Dim MFBedroom As New Room
 MFBedroom.RoomName = "Mother & Father Bedroom"
 MFBedroom.RoomStuff.Append(gate)
 rooms.Append(MFBedroom)

 ' Office
 Dim desk As New Stuff
 desk.StuffName = "Desk"

 Dim office As New Room
 office.RoomName = "Office"
 office.RoomStuff.Append(desk)
 rooms.Append(office)

 ' Boy's Bedroom
 Dim bed As New Stuff
 bed.StuffName = "Bed"

 Dim boyBedroom As New Room
 boyBedroom.RoomName = "Boy's Bedroom"
 boyBedroom.RoomStuff.Append(bed)
 rooms.Append(boyBedroom)

 ' Girl's Bedroom
 Dim sax As New Stuff
 sax.StuffName = "Saxophone"

 Dim girlBedroom As New Room
 girlBedroom.RoomName = "Girl's Bedroom"
 girlBedroom.RoomStuff.Append(sax)
 rooms.Append(girlBedroom)

 ' House Map
 frontPorch.MovableDirections.Value("N") = hallway
 hallway.MovableDirections.Value("N") = kitchen
 hallway.MovableDirections.Value("S") = frontPorch
 kitchen.MovableDirections.Value("S") = hallway
 PlayRoom.MovableDirections.Value ("E") = kitchen
 PlayRoom.MovableDirections.Value ("S") = livingRoom
 LivingRoom.MovableDirections.Value ("E") = hallway

Raspberry Pi Book

Page 41

 LivingRoom.MovableDirections.Value ("N") = playRoom
 kitchen.MovableDirections.Value("W") = playRoom
 hallway.MovableDirections.Value("W") = livingRoom
 hallway.MovableDirections.Value("U") = upstairHallway
 UpstairHallway.MovableDirections.Value("D") = hallway
 UpstairHallway.MovableDirections.Value("E") = MFBedroom
 MFBedroom.MovableDirections.Value("W") = upstairHallway
 UpstairHallway.MovableDirections.Value("N") = office
 Office.MovableDirections.Value("S") = upstairHallway
 UpstairHallway.MovableDirections.Value("W") = boyBedroom
 boyBedroom.MovableDirections.Value("E") = upstairHallway
 girlBedroom.MovableDirections.Value("N") = upstairHallway
 UpstairHallway.MovableDirections.Value("S") = girlBedroom

 ' Loop through the rooms
 ' Randomly add Seltzer to an item in a room
 Dim stuffList() As Stuff
 For Each r As Room In Rooms
 For Each s As Stuff In r.RoomStuff
 If s.StuffName = "Door" Or s.StuffName = "Gate" Then Continue
 stuffList.Append(s)
 Next
 Next

 stuffList.Shuffle
 stuffList(0).SeltzerIsHere = True
End Sub

The last bit of code is the code that starts the game and processes your commands. This code is in the Run event
handler for the App object:

 Setup

 Print "Find Seltzer!"
 Print ""

 DisplayRoom

 Dim command As String

 Do
 Print ""
 Print "What would you like to do?"
 command = Input

 Select Case command
 Case "quit", "die"

Raspberry Pi Book

Page 42

 Quit
 Case "look"
 DisplayRoom
 Continue
 Case "?", "help"
 ShowCommands
 Continue
 End Select

 Dim commands() As String = command.Split(" ")

 If commands.Ubound >= 1 Then

 Dim verb As String = commands(0)
 Dim noun As String
 For i As Integer = 1 To commands.Ubound
 noun = noun + commands(i) + " "
 Next
 noun = noun.Trim

 Select Case verb
 Case "Quit"
 Quit
 Case "Go", "Move"
 ' Direction
 Dim direction As String = noun.Left(1)

 Dim newRoom As Room = CurrentRoom.Move(direction)
 If newRoom <> Nil Then
 CurrentRoom = newRoom
 DisplayRoom
 score = score + 1
 Else
 Print "You cannot move in that direction."
 End If

 Case "Look", "Examine"
 If CurrentRoom.LookAt(noun) Then
 Print "Game Over!"
 Print "Your Score is " + Score.ToText
 Quit
 End If
 Case Else
 Sorry(command)

 End Select

 Else

Raspberry Pi Book

Page 43

 Sorry(command)
 End If
 Loop Until False

You can test the game by running it on your main computer. You can use the Remote Debugger to run the game on
your Raspberry Pi.

Remember, because this is a console app you will have to manually start the app on the Pi from its terminal. For
example, if the "Download Location" in your Remote Debugger Stub is set to the Desktop, you can use these
commands in the Pi Terminal to navigate to the directory and run the app:

cd ~/Desktop/DebugFindSeltzer

./FindSeltzer

Raspberry Pi Book

Page 44

Files
This chapter covers the parts of the Xojo framework that you can use to load and save files to access data on the
Internet.

Files
All file access is done using a class called FolderItem. A FolderItem is anything that can be stored on a drive such as
volumes, folders, files, applications, and documents.

Using the FolderItem class, you can get a reference to any such items on your drives. To read from a file, you need a
FolderItem for it. To write to a file, you need a FolderItem. When you ask users to select a file using one of the file
selectors, you get a FolderItem referring to the file they selected.

Once you have a FolderItem, you can refer to its properties (such as Name or path) and perform actions on it such
as deleting or copying it.

There are actually two separate FolderItem classes that are available for use. There is the classic FolderItem class
which works with Desktop, Web and Console projects (but not iOS). There is also the Xojo.IO.FolderItem class that is
part of the Xojo framework. This class is available for all project types, including iOS.

Although you cannot use these two classes interchangeably, it is easy to switch between them. To create a
Xojo.IO.FolderItem from a classic FolderItem, you use the Constructor:

Dim userFile As FolderItem = GetOpenFolderItem("") ' classic FolderItem
Dim newFile As New Xojo.IO.FolderItem(userFile.NativePath.ToText)

And you do a similar thing to create a classic FolderItem from a Xojo.IO.FolderItem:

Dim newFile As New Xojo.IO.FolderItem("test.txt")
Dim classicFile As New FolderItem(newFile.Path, FolderItem.PathTypeNative)

You will only need to worry about switching between FolderItems when you are working with projects that use a
mixture of the classic and Xojo frameworks.

Reading from a Text File
Once you have a FolderItem that represents an existing text file you wish to open, you open the file using the Open
shared method of the TextInputStream class. This method is a function that returns a “stream” that carries the text
from the text file to your application. The stream is called a TextInputStream. This is a special class of object
designed specifically for reading text from text files. You then use ReadAll or ReadLine methods of the
TextInputStream to get the text from the text file. The TextInputStream keeps track of the last position in the file
you read from.

http://developer.xojo.com/folderitem
http://developer.xojo.com/xojo-io-folderitem
http://developer.xojo.com/xojo-io-textinputstream

Raspberry Pi Book

Page 45

The TextInputStream.ReadAll method returns all the text from the file (via the TextInputStream) as Text. The
ReadLine method returns the next line of text (the text after the last character read but before the next end of line
character). As you read text, you can determine if you have reached the end of the file by checking the
TextInputStream’s EOF (end of file) property. This property will be True when the end of the file has been reached.
When you are finished reading text from the file, call the TextInputStream’s Close method to close the stream to the
file, making the file available to be opened again.

This example lets the user choose a text file using the Open-file dialog box and displays the text in a TextArea:

Dim f FolderItem
f = GetOpenFolderItem("")
If f <> Nil Then
 Dim file As New Xojo.IO.FolderItem(f.NativePath)
 Dim stream As Xojo.IO.TextInputStream
 stream = TextInputStream.Open(file, Xojo.Core.TextEncoding.UTF8)
 TextArea1.Text = stream.ReadAll
 stream.Close
End If

Because ReadAll reads all of the text in the file, the resulting string will be as large as the file. Keep this in
mind because reading a large file could require more memory than the system has available for the app.

This example reads the lines of text from a file stored in the Desktop folder and puts each line as a row in a ListBox:

Dim f As Xojo.IO.FolderItem
f = SpecialFolder.Desktop.Child("SampleFile.txt")
If f <> Nil And f.Exists Then
 Dim stream As Xojo.IO.TextInputStream
 stream = TextInputStream.Open(f, Xojo.Core.TextEncoding.UTF8)
 While Not stream.EOF
 ListBox1.AddRow(stream.ReadLine)
 Wend
 stream.Close
End If

Writing to a Text File
Once you have a FolderItem that represents the text file you wish to open and write to, you open the file using the
Append shared method of the TextOutputStream class. If you are creating a new text file or overwriting an existing
text file, use the Create shared method of the TextOutputStream class. These methods are functions that return a
“stream” that carries the text from your application to the text file. The stream is called a TextOutputStream. This is
a special class of object designed specifically for writing text to text files. You then use the WriteLine method of the
TextOutputStream class to write the text to the text file.

The WriteLine method, by default, adds a carriage return to the end of each line.

http://developer.xojo.com/xojo-io-textoutputstream

Raspberry Pi Book

Page 46

When you are finished writing text to the file, call the TextOutputStream’s Close method to close the stream to the
file making the file available to be opened again. This prompts the user to select an existing text file and then adds
the contents of three TextFields to the end of the text file and closes the stream:

Dim f FolderItem
f = GetOpenFolderItem("")
If f <> Nil Then
 Dim file As New Xojo.IO.FolderItem(f.NativePath)
 Dim stream As Xojo.IO.TextOutputStream
 stream = TextOutputStream.Append(file, Xojo.Core.TextEncoding.UTF8)
 stream.WriteLine(NameField.Text)
 stream.WriteLine(AddressField.Text)
 stream.WriteLine(PhoneField.Text)
 stream.Close
End If

If you want to create a new text file, then call TextOutputStream.Create instead. This example passes a default
filename for the new text file:

Dim f As FolderItem
f = GetSaveFolderItem("", "CreateExample.txt")
If f <> Nil Then
 Dim file As New Xojo.IO.FolderItem(f.NativePath)
 Dim stream As TextOutputStream
 stream = TextOutputStream.Create(file, Xojo.Core.TextEncoding.UTF8)
 stream.WriteLine(NameField.Text)
 stream.WriteLine(AddressField.Text)
 stream.WriteLine(PhoneField.Text)
 stream.Close
End If

Raspberry Pi Book

Page 47

Graphical User Interfaces
A graphical user interface (GUI) is what you typically see when you use an app: the layout, with buttons and other
controls. In order for your app to have a GUI, you'll need to create either a Desktop or Web app.

After starting Xojo and choosing either Desktop or Web to create your project, you'll see the Layout Editor with a list
of controls in the Library on the right side of the main workspace window. You can drag controls from the Library
onto the layout, positioning as you want.

The types of controls vary between desktop and web projects, but there are many similarities, such as Button,
Listboxes, PopupMenus, etc. To work with a control, you implement its events. For example, a button has an Action
event that is called when the button is clicked.

To create a simple "Hello, World" GUI app, drag a button onto the layout. With the button selected, click the "+"
button in the command bar and select "Event Handler". Choose "Action" and click OK.

In the code editor, put this code to display a simple dialog:

MsgBox("Hello, World!")

Run the project and click the OK button to see the dialog.

You can learn more about the many controls available to you by reading the appropriate section of the User Guide:
Desktop Controls●

Web Controls●

Canvas
One of the most useful controls is the Canvas control, which you can use to draw just about anything on the screen.
This can be text, pictures or graphics you draw yourself. You put the drawing code in the Paint event handler.

As a simple example, drag a Canvas onto a layout, resize it to use most of the layout area and add its Paint event
handler using the same steps shown above to add the Action event handler to the button. In the Paint event
handler, add this code to draw some simple shapes and text:

g.ForeColor = &cff0000 ' Red
g.FillRect(10, 10, 100, 50)

g.ForeColor = &c00ff00 ' Green
g.FillOval(100, 100, 100, 50)

g.ForeColor = &c0000ff ' Blue
g.DrawString("Hello, World!", 10, 100)

http://developer.xojo.com/userguide/desktop-ui
http://developer.xojo.com/userguide/web-ui-overview

Raspberry Pi Book

Page 48

GUI Project - Music Player
In this project you will create a GUI Music Player that can play mp3 and aac (m4a) files from a folder.

By default Raspberry Pi sound output is sent to the HDMI port. There is also a headphone port that can be used for
sound output. To switch between the sound outputs, you use this command at the Terminal:

sudo amixer cset numid=3 1

Other values you can use are: 0=auto, 1=headphones, 2=HDMI.

Create the Project
Create a Desktop project and call it MP3Player. For controls, you will add three buttons and a label to Window1.
Arrange them to look like this:

Change the name of the label from "Label1" to "NowPlayingLabel" and make it as wide as the window.

Now add these properties to keep track of the song files to play and the currently playing song sound:
CurrentSong As Sound●

CurrentSongIndex As Integer●

Songs() As FolderItem●

The music files are loaded as Sound objects and the CurrentSong property is the song that is currently playing. The

Raspberry Pi Book

Page 49

Songs() array is an array of the MP3 and AAC files that were loaded from the selected folder. And the
CurrentSongIndex is the position of the current file (in the array) to play.

With this setup out of the way, you can start adding code. The first thing to do is to load the music files from the
selected folder. Add the Action event to the "Choose Music Folder" button and enter this code:

' Choose a folder, grab all music files in the folder
' and save in array
Dim musicFolder As FolderItem = SelectFolder
If musicFolder <> Nil Then
 CurrentSongIndex = -1
 ReDim Songs(-1)

 Dim count As Integer = musicFolder.Count
 For i As Integer = 1 To count
 Dim f As FolderItem = musicFolder.Item(i)
 If f <> Nil And (f.Name.Right(3) = "mp3" Or f.Name.Right(3) = "m4a") Then
 Songs.Append(f)
 End If
 Next
End If

PlayNextSong

The last line calls a method, PlayNextSong, that starts playing the next song in the array. Here is the code for the
PlayNextSong method:

Sub PlayNextSong()
 If CurrentSong <> Nil Then CurrentSong.Stop

 CurrentSongIndex = CurrentSongIndex + 1
 If CurrentSongIndex > Songs.Ubound Then CurrentSongIndex = 0

 If CurrentSongIndex <= Songs.Ubound Then
 CurrentSong = Songs(CurrentSongIndex).OpenAsSound
 CurrentSong.Play
 NowPlayingLabel.Text = Songs(CurrentSongIndex).Name
 End If

End Sub

Remember, do not type the Sub/End Sub part of the method in the code editor; instead enter that in the Inspector.

This code stops any currently playing song, increases the current song index by 1 (looping back to the start if the
end is reached) and then loads the sound file from the array so it can be played. Lastly it updates the label with the
name of the song file.

Raspberry Pi Book

Page 50

You can do a quick test with just this code in place. Run the project (using the Remote Debugger) on the Pi and
choose a folder containing music files. The first song in the folder should start playing.

Adding Features
There are still two buttons on the window that don't yet do anything. The Play button will be used to Play and Stop
the current song. Add the Action event to the Play button and enter this code:

If CurrentSong.IsPlaying Then
 CurrentSong.Stop
Else
 CurrentSong.Play
End If

The Skip button skips to the next song. Add the Action event and have it call the PlayNextSong method:

PlayNextSong

You can now again run the project on the Pi to test out these new features. When music is playing, click the Play
button to stop and play. Click the Skip button to skip to and play the next song.

Raspberry Pi Book

Page 51

If you've let a song play until it finishes, you'll notice that the next song does not start playing. This is because there
is no code to check if the current song has finished. If you recall the code in the Play button it checks a property
called "IsPlaying" to see if the song is currently playing. That property could be also be used by a Timer to check if
the song has finished playing so it could start playing the next song. However this won't quite be enough. If the user
manually stops the song, then IsPlaying will be false and the Timer will automatically start playing the next song,
which is probably not the behavior you want. To track when a user has manually stopped the music, another
property is needed. Add this to Window1:

IsSongStopped As Boolean●

Now you can drag a Timer on to Window1 and add the Timer's Action event handler with this code (you can leave
the Timer with its default period of 1000 and Mode to Multiple):

If CurrentSong <> Nil Then
 If Not CurrentSong.IsPlaying And Not IsSongStopped Then
 ' The song is no longer playing and the user has not manually stopped
 ' so that must mean the song has finished on its own.
 PlayNextSong
 End If
End If

And lastly, you need to go back to the Play button Action event handler and change its code to set the value in
IsSongStopped like this:

If CurrentSong.IsPlaying Then
 CurrentSong.Stop
 IsSongStopped = True
Else
 CurrentSong.Play
 IsSongStopped = False
End If

Run the project on the Pi and you'll see that the next song starts playing about 1 second after the current song
finishes.

Improvements
Try improving the music player with these changes:

Change the text of the Play button to switch between Play/Stop depending on the state of the music.●

Change the text of the Skip button to show the name of the song that will be played next.●

Use the MoviePlayer control to play the music (instead of the Sound property) so you can get pausing, duration●

and other features.

Raspberry Pi Book

Page 52

Internet Access
This chapter covers the parts of the Xojo framework that you can use to load ans save files to access data on the
Internet.

HTTPSocket
An HTTPSocket is used to connect to make Internet connections to web pages and web services. To use an
HTTPSocket, you can drag a Generic Object from the Library and change its Super in the Inspector to
Xojo.Net.HTTPSocket.

Requesting Data
The Send method is used to send a request to a web page or to a web service. Two common types of request
methods are GET and POST. After you send a request, the results are available in the PageReceived event handler of
the HTTPSocket.

This simple code sends a GET request to the demo web service that returns the list of customers in a database:

MySocket.Send("GET", "http://demos.xojo.com/EEWS/index.cgi/api/GetAllCustomers")

The Send method is asynchronous, which means that after you call the Send method your code continues running.
When the data is returned, the PageReceived event on the HTTPSocket is called with the results.

This code in the PageReceived event collects the returned data (in JSON format) into a Dictionary:

' Convert binary data to JSON text
Dim jsonText As Text = Xojo.Core.TextEncoding.UTF8.ConvertDataToText(Content)

' Convert JSON text to a Dictionary
Dim json As Xojo.Core.Dictionary
json = Xojo.Data.ParseJSON(jsonText)

Dim customers As Xojo.Core.Dictionary
customers = json.Value("GetAllCustomers")

' Loop through all the customers in the Dictionary and get the first name
For Each entry As Xojo.Core.DictionaryEntry In customers
 Dim custDict As Xojo.Core.Dictionary = entry.Value
 Dim firstName As Text = custDict.Value("FirstName") ' display or otherwise use
Next

Submitting Data
You also use the Send method to submit data, but you typically use the POST request method and supply the data
using the SetRequestContent method. Using the demo web service from above, you can request all the information

http://developer.xojo.com/xojo-net-httpsocket

Raspberry Pi Book

Page 53

for a specific customer:

Dim cust As New Xojo.Core.Dictionary
cust.Value("ID") = 10179 ' the specific customer

Dim json As Text
json = Xojo.Data.GenerateJSON(cust)

Dim data As Xojo.Core.MemoryBlock
data = Xojo.Core.TextEncoding.UTF8.ConvertTextToData(json)

MySocket.SetRequestContent(data, "application/x-www-form-urlencoded")
MySocket.Send("POST", "http://demos.xojo.com/EEWS/index.cgi/api/GetCustomer")

The resulting customer information is available in the PageReceived event and can be converted from JSON to a
Dictionary for use in your project:

Dim jsonText As Text = Xojo.Core.TextEncoding.UTF8.ConvertDataToText(Content)

Dim json As Xojo.Core.Dictionary
json = Xojo.Data.ParseJSON(jsonText)

Dim custInfo As Xojo.Core.Dictionary
custInfo = json.Value("GetCustomer")

Dim id As Integer
Dim firstName, lastName As Text
For Each entry As Xojo.Core.DictionaryEntry In custInfo
 Select Case entry.Key
 Case "ID"
 id = Integer.FromText(entry.Value)
 Case "FirstName"
 firstName = entry.Value
 Case "LastName"
 lastName = entry.Value
 End Select
Next

Raspberry Pi Book

Page 54

Cat Pictures
In this project you will create an app that gets and displays cat pictures from the Internet. Your app will get pictures
from the Internet using a web site called TheCatAPI. This website gives you a different cat picture each time you call
it. The process for your app will be to call the web site (using a special URL for accessing its “web service”) when a
button is clicked and then display the picture in a Canvas control on the window after it is received.

Create the Project
Create a new desktop project and add a Canvas and button to Window1. Resize the Canvas so it uses up most of the
window area so your layout looks like this:

Now add a property to store the cat picture after it is received so that it can be displayed:
CatPicture As Picture●

Next you need to add an HTTPSocket to connect to the Internet and receive the cat pictures. Drag the "Generic
Object" from the Library onto the Window1 layout. This adds it at the bottom of the layout (called the Shelf). Click on
it and display the Inspector. Change its name from "Object1" to "CatSocket" and its Super from "Object" to
"HttpSocket".

It time to add the first bit of code that displays the picture that was received. Right-click on the CatSocket object in
the Shelf and select “Add to CatConnector” in the menu, from the submenu select “Event Handler”. This displays

Raspberry Pi Book

Page 55

the Event Handler window. In addition to being object-oriented, Xojo is event-based. Events are actions that occur
when something happens in your app, such as the user tapping on the UI or data being received from the Internet.

In the list of event handlers, you want to click the PageReceived and then click the OK button to add the event
handler to CatSocket. The PageReceived event handler is what is called when the picture is received from the web
service. If you look back at the CatSocket in the Navigator on the left, you’ll now see that “PageReceived” is
displayed below it. This is where you will put the code to display the picture.

Click on “PageReceived” to display the Code Editor where you can enter this code:

' Convert Xojo.Core.MemoryBlock to MemoryBlock for use by Picture
Dim temp As MemoryBlock = Content.Data
Dim mb As New MemoryBlock(Content.Size)
mb.StringValue(0, mb.Size) = temp.StringValue(0, mb.Size)

CatPicture = Picture.FromData(mb)
Canvas1.Invalidate(False)

This code converts the data received by the CatConnector to a Picture, then tells the Canvas to refresh itself.
Speaking of the Canvas, you need to tell it how to draw the picture. Add the Paint event to Canvas1 with this code:

If CatPicture <> Nil Then
 g.DrawPicture(CatPicture, 0, 0, g.Width, g.Height, 0, 0, CatPicture.Width,
CatPicture.Height)
End If

Lastly, add the Action event to the button with this code to request the picture from the web service:

CatSocket.Send("GET", "http://thecatapi.com/api/images/get")

You can test this on your main computer or run it on the Pi using the Remote Debugger. Click the Get Cat button to
fetch and display a cat picture.

Raspberry Pi Book

Page 56

Improvements
Here are some suggestions for improvements to the Cat Pictures app:

Set the locking for the Canvas so that the picture window (and thus cat picture) can be resized.●

Add the ability to save the picture to a file. Look at the Picture.Save method.●

Raspberry Pi Book

Page 57

Making a Game
You can use the Canvas control described in the Graphic User Interface section and used by the Cat Pictures
project to also make games. In addition to the Canvas control you typically use a Timer control to handle animation
and redrawing of the Canvas.

As a quick example, in this sectionyou'll learn how to make a simple Catch Xojo game. In this game, Xojo logos will
drop from the top of the screen and it is your job to catch has many as you can.

Game Setup
This game is a desktop app, so create a new desktop project and drag a Canvas to the layout, resizing it to fill the
available area. Change its name (using the Inspector) to GameCanvas.

You also need to add the image that will drop. You can use any image you want or just drag the XojoLogoSmall.png
file into your project.

The next things to add to the layout are two Timers. Drag the first timer to the layout and change its name to
AddItemTimer and its Period to 1000. This Timer adds new XojoLogos to the screen at a rate of 1 per second (1000
milliseconds). Drag a second timer to the layout and change its name to DropTimer and its Period to 20. This Timer
moves the XojoLogos down the screen.

The last thing to add to the project is a class that will represent these items that will appear on the screen for you to
catch. Add a class to the project and name it "CatchItem".

Now you are ready to start adding code.

Adding Code
The first code to add will simply draw Xojo logos at the top of the screen and have them drop to the bottom.

To start, first you add two properties to the CatchItem class:
X As Integer●

Y As Integer●

These properties are used to track the position of the item on the screen.

Now you can add a new method to the CatchItem class. Name it "Constructor". This method is called when a new
CatchItem is created and is used to initialize it. This is the code:

Sub Constructor(maxWidth As Integer)
 X = Xojo.Math.RandomInt(0, maxWidth - XojoLogo.Width)
 Y = 0
End Sub

http://developer.xojo.com/libs/ckfinder/core/connector/php/connector.php?command=DownloadFile&lang=en&type=Images¤tFolder=/&hash=aa8f40aa996dcd65&fileName=XojoLogoSmall.png

Raspberry Pi Book

Page 58

This code chooses a random number for the X (horizontal) position of the item and starts it at the top (Y = 0) of the
screen.

You can now add a Move method to move the item down the screen:

Sub Move()
 Y = Y + 2
End Sub

The last method to add is the Draw method which simply draws the item on the screen:

Sub Draw(g As Graphics)
 g.DrawPicture(XojoLogo, X, Y)
End Sub

You'll notice this method takes a parameter. This parameter will be supplied by code on the Canvas.

You now need to go back to Window1 to add the code to display and move your CatchItem. First, you'll want to add
a couple properties to the window:

ItemsToCatch() As CatchItem●

Score As Integer●

ItemsToCatch is an array that contains all the CatchItems to display. Score will eventually be used to count the
items that you catch.

Now select the AddItemTimer on the Window and add its Action event handler. As noted earlier, this Timer has a
Period of 1000 milliseconds, which means that the Action event is called about once a second. Each time it is called,
you can add a new item to display on screen with this code:

Dim item As New CatchItem(GameCanvas.Width)
ItemsToCatch.Append(item)
GameCanvas.Invalidate(False)

This code creates a new CatchItem (supplying the width to the constructor so that it knows where it can be
positioned) and then adds the new item to the ItemToCatch array property. This does not display the item on the
screen; it just adds it to the array of items to display on the screen. Displaying the item on the screen is done by the
Canvas and you tell the Canvas to draw by calling the Invalidate method to indicate that its contents are out-of-date
and should be redrawn. This calls the Canvas Paint event to get called and this is the code you'll add next.

Select the GameCanvas and add its Paint event handler with this code:

For i As Integer = ItemsToCatch.Ubound DownTo 0
 ItemsToCatch(i).Draw(g)
 If ItemsToCatch(i).Y > g.Height Then
 ' Remove items once they fall off the screen
 ItemsToCatch.Remove(i)

Raspberry Pi Book

Page 59

 End If
Next
g.DrawString("Score: " + Str(Score), 10, 10)

This code loops through the items in the ItemsToCatch array (last to first) and tells each one to draw by calling its
Draw method. After drawing, it checks the Y position to see if it would be off the screen and if it is, then the item is
removed from the array so that it no longer gets drawn. Lastly, the score (always 0 right now) is drawn in the top
left of the screen.

You're not quite done, but you may want to run the project now to see what it does. You can actually just run it on
whatever computer you are using; you don't have to transfer it to the Pi just yet. When you run it, you should see a
bunch of Xojo logos appear at the top of the screen, but not move. That's because you haven't added the last bit of
code to tell the items to move. Quit the app and back in Xojo, select the DropTimer and add this code:

For Each item As CatchItem In ItemsToCatch
 item.Move
Next
GameCanvas.Invalidate(False)

This code loops through all the items in the CatchItem array and calls each of their Move methods. Then it tells the
Canvas to update itself, because all the items no have new positions and need to be redrawn.

Run the project again and you'll see items appear at the top of the screen and drop down to the bottom.

You are now nearly done! The next code to add is to detect when you "catch" an item. For this game, you'll catch an
item by simply clicking on it. In order to determine if an item has been clicked, you'll want to add a new method to
the CatchItem class:

Function IsCaught(mouseX As Integer, mouseY As Integer) as Boolean
 Dim itemRect As New Xojo.Core.Rect(X, Y, 50, 50)
 Dim mousePoint As New Xojo.Core.Point(mouseX, mouseY)

 Return itemRect.Contains(mousePoint)
End Function

This method takes as parameters the coordinates of where the mouse was clicked. It then creates a Rect for the
current position of the item and a point for the mouse click position. If the Rect contains the mouse point, then
IsCaught returns True.

Now you need to determine when the mouse was clicked.

The Canvas control has just an event for this, so add the MouseDown event handler to it and enter this code:

For i As Integer = ItemsToCatch.Ubound DownTo 0
 If ItemsToCatch(i).IsCaught(X, Y) Then
 ' When caught, increase the score and remove the item

Raspberry Pi Book

Page 60

 Score = Score + 1
 ItemsToCatch.Remove(i)
 Me.Invalidate(False)
 End If
Next

This code is similar to the Paint event code. It also loops through all the items in the ItemsToCatch array and calls
the IsCaught method to see if it was caught. If it was caught, the score is increased and it is removed from the array
so it no longer gets drawn.

And that's it! You've made your first simple game that you can play on the Raspberry Pi. You can run it on the Pi
using the Remote Debugger or by building and transferring the app.

Improvements
Here are suggestions for improvements and changes you can make to the game:

To increase the difficulty, add new items more frequently than 1 per second.●

Or, instead have the difficulty increase as the game progresses. You could increase the frequency of new items●

each time an existing one is caught.
Have the game end when 3 items reach the bottom and are not caught.●

Advanced: Try changing the project so that the items move in different directions rather than just from the top●

Raspberry Pi Book

Page 61

of the screen to the bottom. Maybe you can even have them bounce around when they reach the edges!

Raspberry Pi Book

Page 62

Web Project - Family Notes
With Xojo you can also make web apps that use the Raspberry Pi as a simple web server that other devices, such
as computers, phones and tablets can connect to.

To create a web app you design the layout using the built-in controls much like you would for a desktop app. For this
project, you will create a "Family Notes" web app. This app is meant to run on your home wifi and be accessible to
devices connected to the wifi. With it, members of you family can leave messages to one another, similar to how
you might use a magnetic white board attached for a refridgerator.

Create the Project and User Interface
Start by creating a new web project and give it the name "FamilyNotes". For its user interface, this project uses a
WebPage and a WebDialog. Starting with the WebPage, you want to have a ListBox, a TextArea and a Button
arranged to look like this:

Change the names for each of the controls as shown below:
ListBox1: NoteList●

TextArea1: NoteArea●

Raspberry Pi Book

Page 63

Button1: AddNoteButton●

To change the heading on the ListBox, click on the ListBox and then select the "pencil" icon in the lower right. This
opens a popup editor where you can double-click on the header row to change the header text.

In order for the controls and the WebPage to be properly positioned on devices of all sizes, you'll also want to adjust
a few properties. First, on WebPage1 change the Min Width to 320 and the Min Height to 200. This allows the web
page to display correctly on phone-sized devices.

Next you want to change the "locking" for the controls so they resize when the web page size changes. You change
the locking by clicking on the locks in the Locking area of the Inspector when the control is selected. Here is how
you want the locking set for each of the controls:

NoteList: Click the left, top and bottom locks so they are "locked". The right lock should be unlocked.●

NoteArea: Click all four locks so they are locked.●

AddNoteButton: Click the left and bottom locks so they are locked. The other locks should be unlocked.●

The next part of the user interface to create is the dialog for adding a new note. Select Insert -> Web Dialog and
create a web dialog with three Labels, two TextFields, one TextArea and two Buttons arranged to look like this:

Change the names of the controls as shown below:
TextField1: FromField●

TextField2: SubjectField●

TextArea1: DetailsArea●

PushButton1: CancelButton●

PushButton2: OKButton●

Now that you are finished with the UI, you can now move on to writing code.

Raspberry Pi Book

Page 64

Add Code
The notes that are created will be saved in an array of Dictionaries that are periodically saved as a JSON file. Since
everyone that connects to the web app needs to access the notes, the array of dictionaries should be global to the
entire web app. Create a public property on the App object:

Notes() As Xojo.Core.Dictionary●

The web page needs code to display the notes in the array and to display the dialog to add new notes. Start by
adding a method, LoadNotes:

Sub LoadNotes()
 ' Display all the notes

 NoteList.DeleteAllRows

 App.Notes.Sort(AddressOf DateCompare)

 For Each n As Xojo.Core.Dictionary In App.Notes
 NoteList.AddRow(n.Value("Subject"), n.Value("From"))
 NoteList.RowTag(NoteList.LastIndex) = n.Value("Details")
 Next
End Sub

This method loops though all the notes in the Dictionary and adds them to the ListBox. Notice that it also adds the
note details to the RowTag so that when a row is clicked, it can be easily retrieved to display in the text area on the
web page.

The Sort method call uses something called a "Delegate", which is simply a reference to another method. In this
case the method is used to sort the dictionary so that the most recently added notes appear first. This is the code
for the DateCompare method:

Function DateCompare(value1 As Xojo.Core.Dictionary, value2 As Xojo.Core.Dictionary)
as Integer
 ' Used to sort the notes so that the most recent notes
 ' appear first.
 Dim d1 As Double = value1.Value("Timestamp")
 Dim d2 As Double = value2.Value("Timestamp")

 If d1 < d2 Then Return 1
 If d1 > d2 Then Return -1
 Return 0
End Function

With this code in place, you can now have the web page call it when it is displayed. Add the Shown event handler to
the web page and call the LoadNotes method:

Raspberry Pi Book

Page 65

LoadNotes

It's great that the code is in place to load the notes, but there are no notes yet since you have not created a way to
add them. Notes are created using the EditNoteDialog so you now need to add a way to display the dialog. The first
step is to actually put the dialog on the page. To do this, select the web page and then drag EditNoteDialog from the
Navigator onto the web page. It will appear on the "shelf" area at the bottom. Click on it and change its name to
"EditDialog".

The user clicks the "Add Note" button to display the EditDialog, so add the Action event handler to the "Add Note"
button with this code:

EditDialog.Show

While you are still on the web page, the last code to add it to tell the ListBox to reload all the notes after the
EditDialog is closed. To do this, add the Dismissed event to EditDialog with this code:

LoadNotes

Now you are ready to add code to EditNoteDialog. The first thing to do is to add the Action event to the Cancel
button with this code to close the dialog:

Self.Close

Next, add the Action event to the OK button. The code here will create a new dictionary, add the values from the
fields to it, append the dictionary to the global array, and close the dialog:

Dim n As New Xojo.Core.Dictionary
n.Value("From") = FromField.Text
n.Value("Subject") = SubjectField.Text
n.Value("Details") = DetailsArea.Text
n.Value("Timestamp") = Xojo.Core.Date.Now.SecondsFrom1970

App.Notes.Append(n)

Self.Close

Each time the dialog is opened for the same user, the fields will contain the values that were previously entered. It
makes sense to keep the same value for the FromField, but it probably makes sense to clear the other two. Add the
Shown event to the dialog with with this code:

SubjectField.Text = ""
DetailsArea.Text = ""

You are just about done. The last thing to do is to make sure the notes do not get lost should you quit the web app.

Raspberry Pi Book

Page 66

One way to do this is to periodically save the array of dictionaries to a JSON file. You don't really need to save every
time a change is made, but you do want to save it periodically. A good way to ensure that changes get saved is to
save the JSON file whenever a session is disconnected. This can happen when the user closes the page/tab or when
they refresh the page.

Go to the Session object in the Navigator and add the Close event with this code to call a method you will add next:

SaveNotes

Now you can add the SaveNotes method to the Session:

Sub SaveNotes()
 Dim file As Xojo.IO.FolderItem
 file = Xojo.IO.SpecialFolder.Documents.Child("FamilyNotes.json")

 Dim outputStream As Xojo.IO.TextOutputStream
 outputStream = Xojo.IO.TextOutputStream.Create(file, Xojo.Core.TextEncoding.UTF8)

 Dim jsonText As Text = Xojo.Data.GenerateJSON(App.Notes)

 outputStream.Write(jsonText)
 outputStream.Close

End Sub

The companion method is a way to load the notes when the web app first starts. You can do that by adding the
Open event to the App object with this code to call a LoadNotes method you will add next:

LoadNotes

Now you can add the LoadNotes method to the App:

Sub LoadNotes()
 ' Load notes for the user from a json file

 Dim file As Xojo.IO.FolderItem
 file = Xojo.IO.SpecialFolder.Documents.Child("FamilyNotes.json")

 If file.Exists Then

 Dim inputStream As Xojo.IO.TextInputStream
 inputStream = Xojo.IO.TextInputStream.Open(file, Xojo.Core.TextEncoding.UTF8)
 Dim jsonText As Text = inputStream.ReadAll

 Dim jsonArray() As Auto
 jsonArray = Xojo.Data.ParseJSON(jsonText)

Raspberry Pi Book

Page 67

 For Each d As Xojo.Core.Dictionary In jsonArray
 Notes.Append(d)
 Next
 End If
End Sub

And that is it. You can run the project on your own computer to test it. When you do this it will automatically start
your default web browser with the app open. You can open the app in other browser or other devices on your local
network by entering the local IP address of the computer. For example, if the local IP address is 10.0.1.199, then you
can go to an iPhone and enter this as the URL in Safari: http://10.0.1.199:8080

Deploy the Web App
To use the Pi as a web server for this app, you will want to build the web app as a Standalone app for ARM 32-bit.

Click on Shared in the Build Settings section of the Navigator and change the Deployment Type setting to "Stand
Alone". In the Linux build setting change the Architecture to "ARM 32-bit". Now you can click the Build button (this
does require a Xojo license) to build the web app.

You can transfer the folder containing the app to the Pi and then navigate to it in the Terminal to launch it with this
command:

./FamilyNotes

Once it is running, you can connect to the web app by using the local IP address of the Raspberry Pi, such as:
http://10.0.1.199:8080

This is the app shown on Safari on an iPhone:

Raspberry Pi Book

Page 68

Improvements
Use Styles to improve the look and feel of the app.●

Add a way to remove notes from the list.●

Currently you have to refresh the page in order to see any new notes that were added. You can instead have●

the app automatically update the page when new notes are added. You need to loop through all the connected
sessions and call the LoadPages method for each webpage that is connected.

Raspberry Pi Book

Page 69

Interfacing Hardware with GPIO
GPIO is the General Purpose Input/Output port on the Raspberry Pi. You can use this 40-pin port to connect external
hardware to the Pi. You can connect all kinds of things to the Pi using its GPIO port, including LEDs, motors, displays
and pretty much anything you can think of. Sites such as AdaFruit and CanaKit have lots of hardware and gadgets
you can connect to the Pi.

wiringPi with Xojo
Xojo uses wiringPi to communicate with the GPIO port. In order to use wiringPi with Xojo you'll need to install the
open-source wiringPi library on your Pi. Instructions for this are here:

Install wiringPi Library

In your Xojo projects, you'll need to use the Xojo GPIO library which provides access to most of the wiringPi
functionality for you to use in your Pi projects.

The GPIO library is available on GitHub:

https://github.com/xojo/GPIO

To add the GPIO library to your projects, download it from GitHub, open the project and select the
WiringPiXojo module in the Navigator. You can then copy and paste it to your own Xojo projects.

The WiringPiXojo module provides support for
GPIO pin control●

RGB LED●

LCD panel●

Tones●

Servos●

Pulse-width modulation●

wiring Pi Docs
The official docs for wiringPi will not be replicated here, but links are provided for your reference:

Setup methods●

Core Functions●

Raspberry Pi Specifics●

Timing●

Priority, Interrupts and Threads●

Serial (not yet implemented in Xojo GPIO module; use the Serial class instead)●

SPI Library●

I2C Library●

Shift Library●

Software PWM Library●

Software Tone Library●

https://www.adafruit.com
http://www.canakit.com
http://wiringpi.com/download-and-install/
https://github.com/xojo/GPIO
http://wiringpi.com/reference/setup/
http://wiringpi.com/reference/core-functions/
http://wiringpi.com/reference/raspberry-pi-specifics/
http://wiringpi.com/reference/timing/
http://wiringpi.com/reference/timing/
http://developer.xojo.com/serial
http://wiringpi.com/reference/spi-library/
http://wiringpi.com/reference/i2c-library/
http://wiringpi.com/reference/shift-library/
http://wiringpi.com/reference/software-pwm-library/
http://wiringpi.com/reference/software-tone-library/

Raspberry Pi Book

Page 70

Connecting to GPIO
In most cases you will not connect wires directly to the GPIO port as that is pretty tricky and error-prone. Instead
you will want to connect the pins on the GPIO port to a breadboard by using a cobbler and ribbon cable to make it
much easier to do your wiring.

A breadboard is the place where you will wire your circuit. The ribbon cable and cobbler are essentially used to
extend the GPIO port pins to the breadboard. On the breadboard you can wire everything without soldering. You just
plug things into the holes on the breadboard (no need to solder). Everything is also numbered and labelled which
makes it much easier to make sure you are hooking things up properly.

GPIO Pin Numbering
There are several ways that you can refer to the pins on the GPIO port. You typically do not use the specific pin
number (0-40) but instead refer to the Broadcom (BCM) pin numbers. In a chart as shown below, these are the
numbers you see that are referred to as "GPIO xx".

Raspberry Pi Book

Page 71

Raspberry Pi Book

Page 72

GPIO Project - Blinking LED
In this project, you will create a simple circuit with an LED and then make the LED blink using a Xojo app.

Parts
In order to build the circuit, you'll need some parts:

1 ribbon cable with Raspberry Pi GPIO connectors (AdaFruit link)●

1 cobbler (AdaFruit link)●

1 breadboard (AdaFruit link)●

3 jumper wires (AdaFruit link)●

1 LED (AdaFruit link)●

1 10k resistor (SparkFun link)●

In order to make the LED blink with Xojo, you'll need to install the wiringPi library and grab the WiringPiXojo module
from GitHub:

https://github.com/xojo/GPIO●

Connect Ribon Cable to Pi
First, connect your ribbon cable to the Raspberry Pi. The white/black side is typically facing the side of the Pi that
does not have connectors. There is not a lot of room to work so take your time and make sure the pins are all
aligned before you push it down.

http://www.adafruit.com/products/2028
http://www.adafruit.com/products/2028
http://www.adafruit.com/products/239
http://www.adafruit.com/products/239
http://www.adafruit.com/products/779
https://www.sparkfun.com/products/10969
https://github.com/xojo/GPIO
https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/PiRibbon.jpg?dc=201509031432-2555&width=2500&height=1875

Raspberry Pi Book

Page 73

Setup the Breadboard
First, you'll want to plug your cobbler into the breadboard. The cobbler has to be in the center so that the left and
right pins are separated by the center channel of the breadboard. In this picture, a "t-cobbler" is used and it is
plugged near the top of the board to maximize available space on the board for wiring.

Carefully make sure all the pins are lined up with the holes on the breadboard and push it down. It may take a bit of
force, but you want to get the cobbler to be flush with the breadboard.

The last step is to connect the cobbler to the Raspberry Pi. Plug the other end of the ribbon cable into the cobbler.
It's likely the cobbler will have a slot in it so that the ribbon cable only fits in one direction.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/CobblerBreadboard.JPG?dc=201509031437-2602&width=2500&height=1875

Raspberry Pi Book

Page 74

With the breadboard connected, you now have access to the pins on the GPIO port. As you can see in the photo
above, this cobbler has each of the pins labelled so you can easily tell what they are for without having to count
them.

Each row on the breadboard that matches up to a pin on the cobbler is "connected" to the pin on the cobbler. Any
wires you connect on that row will act as if they are connected to pin on the GPIO port. For example, looking at the
cobbler, you can see that the pin marked "#17" is aligned with row 6 on the cobbler.

Wire the Circuit
Now that you have the breadboard hooked up to the Raspberry Pi, you can start on building the blinking LED circuit.
In this step you'll use 3 wires, 1 LED and a resistor.

Connect a wire to the pin marked "#4". Yellow is used in this example.1.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/PiRibbonCobbler.JPG?dc=201509031439-2264&width=2500&height=1875

Raspberry Pi Book

Page 75

Connect the other end of the wire to an open spot on the board away from the cobbler. Here row 24 is used.2.

Grab the LED. Note that one of the wires coming from the LED is longer than the other. The longer end is the3.
positive (+) connector. Plug the long end into a hole on the breadboard adjacent to the wire (yellow) and the
short end to an open row on the breadboard.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep1.JPG?dc=201509031440-2487&width=2500&height=1875
https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep2.jpg?dc=201509031441-2488&width=2500&height=1875

Raspberry Pi Book

Page 76

A resistor is needed to prevent the power provided by the Pi from blowing out the LED. Take the 10k resistor4.
and connect one end so that it is adjacent to the negative wire of the LED. Connect the other end of the
resistor to an open spot on the board. If you cross over the center of the board to the other side, you can take
advantage of the same row, which is what is done here.

Now connect another wire adjacent to the unconnected resistor wire. Connect this wire to the negative (-)5.
column on the breadboard. This is usually the column on the outer edge.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep3.JPG?dc=201509031442-2346&width=2500&height=1875
https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep4.JPG?dc=201509031443-2203&width=2500&height=1875

Raspberry Pi Book

Page 77

Lastly, connect a wire from the negative column of the breadboard to a GND pin on GPIO. There are several6.
GND pins; you can use any one that is easily reachable.

This completes the circuit.7.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep5.JPG?dc=201509031444-2324&width=2500&height=1875
https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerStep6.JPG?dc=201509031445-2362&width=2500&height=1875

Raspberry Pi Book

Page 78

You can quickly test the circuit by moving the yellow wire from pin #4 to pin 3v3. This directly connects the circuit
to 3.3 volt power. The LED should immediately light up. Switch it back to the #4 pin before moving on to creating
the Xojo app.

Create the Xojo app
To test your circuit, you'll use a simple Xojo app that will alternate between ON (HIGH) and OFF (LOW) on pin #4.
When the pin is ON (HIGH), the LED will illuminate.

Create a new Console project and call it LEDBlinker.1.
Add the GPIO module to the project.2.
Add this code to the App Run event handler:3.

GPIO.SetupGPIO

Const kLEDPin = 4 ' "#4" on the pinout

' Set the pin to accept output
GPIO.PinMode(kLEDPin, GPIO.OUTPUT)

' Blink LED every 1/2 second
While True
 ' Turn the pin on (give it power)
 GPIO.DigitalWrite(kLEDPin, GPIO.ON)
 App.DoEvents(500)

 ' Turn the pin off (no power)

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDBlinkerFinishedCircuit.JPG?dc=201509031447-2527&width=2500&height=1875

Raspberry Pi Book

Page 79

 GPIO.DigitalWrite(kLEDPin, GPIO.OFF)
 App.DoEvents(500)
Wend

Build the app.

Before running the app, make sure you've selected Linux in Build Settings and its architecture to
ARM 32-bit in the Inspector.

Transfer and Run the Xojo app
You can use the Remote Debugger to run and test this app on the Pi. Since this is a console app, you'll need to
manually start the app on the Pi Terminal once it has been transferred by Xojo. To do this, navigate to the
DebugLEDBlinker folder in the Remote Debugger Stub Download Location and then start it using this command:

sudo ./LEDBlinker

The sudo command is needed to access GPIO. The GPIO.SetupGPIOSys method does provide
access to some GPIO functionality without requiring sudo.

The LED should start blinking. To stop the app, press Control-C.

Note that if you press Control-C while the LED is on, it will remain on.

Starting with Raspbian Jessie, you no longer have to use sudo to access GPIO. In order to not require sudo, you have
to first set an environment variable in Terminal before you run the app:

export WIRINGPI_GPIOMEM=1

The Xojo project is included with the Xojo examples and is located here:
Examples/Platform-Specific/Linux/RaspberryPi●

Video
A video of the above steps is available here:

Circuit Diagram
Here is a simple circuit diagram that describes the wiring for the blinking LED circuit:

Raspberry Pi Book

Page 80

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LEDCircuit.png?dc=201509171151-47&width=600&height=758

Raspberry Pi Book

Page 81

GPIO Project - Digital Clock
In this project you will learn how to hook up a HD44780-based LCD character display. This tutorial uses a 20
character by 4 line display, but most of these types of displays are hooked up the same and will work with the
provided code. You'll then create a Xojo app to show the time and date on the LCD.

Parts
LCD character display (HD44780, 20x4 lines)●

Potentiometer●

16 jumper wires●

Wire the Circuit
The LCD consists of 16 pins, of which 12 are used. The potentiometer is used to control the display's contrast. These
are the overall steps:

Plug the LCD into your breadboard. Make sure you have plenty of space to work with. The pins must not1.
overlap with any of the pins in the GPIO cobbler connector.
Wire up power and ground. The LCD uses 5v power. There are several power and ground connections so you'll2.
want to use the power and ground rail on the side of the breadboard.
Connect the potentiometer. You can plug this in anywhere on the board with space.3.
Wire the LCD to the GPIO pins. The specific pins you use does not matter, but if you use different pins than4.
described here, you'll need to update the code to use the pins you connected.
Wire the LCD to the potentiometer.5.

With this all hooked up, you should see the LCD light up and ought to be able to turn the potentiometer to adjust the
contrast so that you can see the boxes where the characters are displayed. The LCD pins are numbered left to right
when looking at the LCD with the pins at the top. These are the specific pin connections:

LCD Pin GPIO Pin
#1 (GND) GND

#2 (VCC) 5.0v

#3 (Vo) To potentiometer (see below)

#4 (RS) #25

#5 (RW) GND

#6 (EN) #24

#7, #8, #9, #10 not used

Raspberry Pi Book

Page 82

LCD Pin GPIO Pin
#11 (D4) #23

#12 (D5) #17

#13 (D6) #21

#14 (D7) #22

#15 (LED+) 5.0v

#16 (LED-) GND

A potentiometer is used to adjust the contrast of the LCD. It is connected like this:

Pot Pin LCD Pin / GPIO Pin
#1 GPIO GND

#2 LCD #3 (Vo)

#3 GPIO 5.0v

When everything is connected correctly you will see the LCD light up and you'll be able to adjust the contrast with
the potentiometer. You will not see any characters, although you ought to be able to see the individual character
boxes.

https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LCDWiring.jpg?dc=201603311549-2965&width=2500&height=1875

Raspberry Pi Book

Page 83

Create the Xojo App
You'll use the Xojo GPIO library to display text on the LCD. This library has the GPIO.LCD module which contains
methods you can call to easily intialize and display text on the LCD.

A Conole app witht his code in the Run event handler displays text on the LCD:

' Display text on 4-line LCD
GPIO.SetupGPIO

Const kRSPin = 25
Const kEPin = 24
Const kD4Pin = 23
Const kD5Pin = 17
Const kD6Pin = 21
Const kD7Pin = 22

Dim lcd As New GPIO.LCD(kRSPin, kEPin, kD4Pin, kD5Pin, _
 kD6Pin, kD7Pin)

lcd.Clear
lcd.Home
lcd.SetMessage("ABCDEFGHIJKLMNOPQRSTUVWXYZ", 1)
lcd.SetMessage("abcdefghijklmnopqrstuvwxyz", 2)
lcd.SetMessage("1234567890!@#$%^&*()", 3)
lcd.SetMessage("-=[];',./_+{}:""<>?", 4)

Using the code above as a starting point, you can now create a Xojo app that updates the LCD to display the current

https://github.com/xojo/GPIO
https://dzf8vqv24eqhg.cloudfront.net/userfiles/1539/2321/ckfinder/images/LCD-Characters.jpg?dc=201603311550-2699&width=2500&height=1875

Raspberry Pi Book

Page 84

time and date. This code in the Run event of a Console app updates the time and date about every 1/2 second:

' Display time and date on 4-line LCD
Using Xojo.Core

GPIO.SetupGPIO

Const kRSPin = 25
Const kEPin = 24
Const kD4Pin = 23
Const kD5Pin = 17
Const kD6Pin = 21
Const kD7Pin = 22

Dim lcd As New GPIO.LCD(kRSPin, kEPin, kD4Pin, kD5Pin, _
 kD6Pin, kD7Pin)

While True ' Loop forever
 lcd.Clear
 lcd.Home
 Dim d As Date = Date.Now
 Dim currentTime As Text = d.ToText(Locale.Current, Date.FormatStyles.None,
Date.FormatStyles.Long)
 Dim currentDate As Text = d.ToText(Locale.Current, Date.FormatStyles.Long,
Date.FormatStyles.None)

 lcd.SetMessage(currentTime, 1)
 lcd.SetMessage(currentDate, 2)

 App.DoEvents(500) ' sleep about 1/2 second to reduce CPU usage
Wend

 You can run this on the Pi using the Remote Debugger or by building and transferring the app.

http://developer.xojo.com/pibook/remote-debugging

Raspberry Pi Book

Page 85

What's Next
You've now created a few types of apps for your Raspberry Pi and even made a few hardware projects. But this only
scratches the surface. The Raspberry Pi really is the "ultimate gadget" and what you can do with it is limited only by
your imagination.

You can download the source code for all the projects in this book here: Raspberry Pi Book Project Source

You'll want to use Xojo 2017 Release 1 or later with these projects.

You can use Xojo for free to make and test your Raspberry Pi apps. When you are ready to build apps to install on
the Pi (for yourself or others) you can purchase a Xojo license in the online store.

Here are some other projects and references that will help you on your journy of Raspberry Pi discovery:
More Xojo projects on the Einhugur blog●

Program Raspberry Pi 2 B Electronics with Xojo Book by Eugene Dakin●

Official Raspberry Pi site●

MagPi, the official Raspberry Pi magazine●

Xojo Raspberry Pi forum channel●

Official Raspberry Pi forum●

CanaKit●

AdaFruit●

http://www.xojo.com/download
https://einhugur.com/blog/index.php/xojo-gpio/
http://www.xdevlibrary.com
https://www.raspberrypi.org
https://www.raspberrypi.org/magpi/
https://forum.xojo.com/conversations/raspberry-pi
https://www.raspberrypi.org/forums/
http://www.canakit.com
https://www.adafruit.com

	Dev Center
	Raspberry Pi Book
	About Raspberry Pi
	Setting up Your Raspberry Pi
	Xojo Overview
	Remote Debugging
	Xojo Programming
	Program Structure
	OOP with Classes
	Project - Find Seltzer
	Files
	Graphical User Interfaces
	Project - Music Player
	Internet Access
	Project - Cat Pictures
	Project - Catch Xojo Game
	Web Project - Family Notes
	Interfacing Hardware with GPIO
	Project - Blinking LED
	Project - Digital Clock
	What's Next

