
 

LLVM Everywhere 
Some of the most recent features added to Xojo, including iOS, 64-bit apps, and 
Raspberry Pi have been made possible by LLVM. Read on to learn more about it. 

What is LLVM? 

On a high-level, LLVM is a collection of libraries and tools for building compilers. The 
LLVM project was started in the early 2000s by Chris Lattner (who eventually went to 
work at Apple and has now moved on to Tesla) and remains in active 
development. Because LLVM is a toolkit for building compilers and because it can target 
most CPU architectures, its use has become much more prominent in recent years. It has 
widespread industry backing with support from major companies including AMD, 
Apple, ARM, IBM, Intel, Google, Mozilla, Nvidia, Qualcomm, Sony, Samsung.

 



The first appearance of LLVM in Xojo was when we started using it to compile and run 
XojoScript code (2010). Later we used LLVM to build iOS apps (2014), 64-bit apps for 
x86 (Windows, MacOS, Linux) and 32-bit apps for Raspberry Pi (2015), and most 
recently we’ve hooked up the Xojo debugger, so it works with apps built using LLVM 
(2016). 

In addition to now being used as part of Xojo’s compiler, LLVM is also used with other 
languages, including: Clang, D, Rust, OpenCL, and Swift. 

Why is Xojo using LLVM? 

First, a little background. A compiler consists of many things and is typically split into 
parts called the “front end” and the “back end”. LLVM has components for both front 
ends and back ends; Xojo uses it as a back end. 

For 32-bit x86 apps, Xojo uses its own in-house, proprietary compiler first created in 
2004/2005. This powerful and fast compiler handles the front end and back end, but it 
does have a couple limitations: it can only target 32-bit x86 and it does not do any 
optimizations. 

But technology marches on and we knew we would eventually have to add support for 
x86-64 (64-bit) and ARM CPU architectures. Updating a compiler is a large undertaking, 
but fortunately the LLVM compiler toolkit started gaining traction in the industry and 
became a better alternative to creating our own x86-64 and ARM compiler back ends. 

Today when you build an iOS app, a 64-bit app for Windows, MacOS or Linux, or an ARM 
app for Raspberry Pi you are using LLVM as the back end to generate your native, 
binary code. 

By using LLVM, we are able to respond more quickly to changes in the industry and to 
add features our users want. As an example, we were able to rapidly add Raspberry Pi 
support (32-bit ARM Linux) by leveraging much LLVM work that had already been done 
for x86-64 and ARM for iOS. 

As Joe Ranieri (the Xojo compiler guru) likes to say, “Every single line of code [you 
write] is a liability and not an asset”. With LLVM we can implement more features 
in less time because we don’t have to recreate the wheel, so to speak. 



In effect, LLVM enables us to better support the unknown future, including new and 
updated architectures. One such example is 64-bit ARM Linux, which will likely become 
necessary at some point. 

Learn More 

LLVM is great. We love it and are thrilled that it has allowed us to add significant 
capabilities to Xojo for you. A compiler is a complicated thing and we are 
pleased that Xojo hides the complexity of compiler technology so that you don’t have to 
worry about it. You just need to focus on making the best app you can, select your 
OS target, click build and let Xojo take care of the rest. 

If this post has made you curious about LLVM and you’d like to learn more, I 
recommend the following: 

• Wikipedia: LLVM 
• LLVM official site 
• Accidental Tech Podcast: Interview with Chris Lattner, creator of LLVM 
• Joe Ranieri’s Compiler Session from XDC 2016 

  

https://en.wikipedia.org/wiki/LLVM
http://llvm.org/
http://atp.fm/205-chris-lattner-interview-transcript/
https://www.xojo.com/store/#conference


 

Overview and Lexer 
At XDC 2016 there was a lot of interest in Joe Ranieri’s Compiler session where he 
talked about compilers and LLVM. I’ve already summarized a bit about LLVM in an 
earlier post, but after talking with Joe we decided to put together a series of blog posts 
on compilers. 

These will all be at a high-level. None of these posts are going to teach you how to write 
a compiler. The goal of these posts is for you to have a basic understanding of the 
components of a compiler and how they all work together to create a native app. 

Compiler Components 

A compiler is a complicated thing and consists of many components. In general, the 
compiler is divided into two major parts: the front end and the back end. In turn, those 
two parts have their own components. 

For the purposes of these posts, this is how we will be covering the components of the 
compiler: 

https://xojo.com/xdc/
https://www.xojo.com/store/#conference
https://llvm.org/
https://blog.xojo.com/2017/12/04/llvm-everywhere/


Front End 

The front end is responsible for taking the source code and converting it to a format that 
the back end can then use to generate binary code that can run on the target CPU 
architecture. The front end has these components: 

• Lexer 
• Parser 
• Semantic Analyzer 
• IR (intermediate representation) Generator 

Back End 

The back end takes the IR, optionally optimizes it and then generates a binary (machine 
code) file that can be run on the target CPU architecture. These are the components of 
the back end: 

• Optimizer 
• Code Generation 
• Linker 

Each of these steps processes things to get it a little further along for the next step to 
handle. 

The linker is not technically part of the compiler but is often considered part of the 
compile process. 

Lexer 

The lexer turns source code into a stream of tokens. This term is actually a shortened 
version of “lexical analysis”. A token is essentially a representation of each item in the 
code at a simple level. 

By way of example, here is a line of source code that does a simple calculation: 

sum = 3.14 + 2 * 4 

https://blog.xojo.com/2018/01/31/compilers-106-optimizer/
https://blog.xojo.com/2018/03/26/compilers-108-code-generation/
https://blog.xojo.com/2018/04/02/compilers-109-linking-and-wrap-up/
https://en.wikipedia.org/wiki/Lexical_analysis


To see how a lexer works, let’s walk through how it would tokenize the above 
calculation, scanning it from left-to-right and tracking its type, value and position in the 
source code (which helps with more precise reporting of errors): 

1. The first token it finds is “sum”  
1. type: identifier 
2. value: sum 
3. start: 0 
4. length: 3 

2. Token: =  
1. type: equals or assigns 
2. value: n/a 
3. start: 4 
4. length: 1 

3. Token: 3.14  
1. type: double 
2.  value: 3.14 
3.  start: 6 
4. length: 4 

4. Token: +  
1. type: plus 
2. value: n/a 
3. start: 11 
4. length: 1 

5. Token: 2  
1. type: integer 
2. value: 2 
3. start: 15 
4. length: 1 

6. Token: *  
1. type: multiply 
2. value: n/a 
3. start: 15 
4. length: 1 

7. Token: 4  
1. type: integer 
2. value: 4 
3. start: 17 



4. length: 1 

As you can see, white space and comments are ignored. So after processing that single 
line of code there are 7 tokens that are handed off to the next part of the compiler, 
which is the Parser. 

  



 

Parser 
At XDC 2016 there was a lot of interest in Joe Ranieri’s Compiler session where he 
talked about compilers and LLVM. After talking with Joe, we decided to put together a 
series of blog posts on compilers. These are at a high-level. None of these posts are 
going to teach you how to write a compiler. The goal of these posts is for you to have a 
basic understanding of the components of a compiler and how they all work together to 
create a native app. 

After the Lexer has converted your source code to tokens, it sends them to the Parser. 
The job of the Parser is to turn these tokens into abstract syntax trees, which are 
representations of the source code and its meaning. 

For reference, this is the simple source code we are “compiling” as we go through the 
parts of the compiler: 

sum = 3.14 + 2 * 4 

  

https://xojo.com/xdc/
https://www.xojo.com/store/#conference
https://llvm.org/


The lexer has converted this to a stream of tokens which are now sent to the Parser to 
process. The tokens are: 

1. Type: identifier  
1. value: sum 
2. start: 0 
3. length: 3 

2. Type: equals or assigns  
1. value: n/a 
2. start: 4 
3. length: 1 

3. Type: double  
1.  value: 3.14 
2.  start: 6 
3. length: 4 

4. Type: plus  
1. value: n/a 
2. start: 11 
3. length: 1 

5. Type: integer  
1. value: 2 
2. start: 15 
3. length: 1 

6. Type: multiply  
1. value: n/a 
2. start: 15 
3. length: 1 

7. Type: integer  
1. value: 4 
2. start: 17 
3. length: 1 

  



Parser 

To see how this works, we’ll go through the tokens and create the syntax tree. 

The first token is the identifier, which the parser knows is actually a variable. So it 
becomes the first node of the tree: 

￼  

The next token is equals or assigns. The parser knows things about this such as that it is 
an assignment and that assignment is a binary operator that has two operands, one on 
the left and one on the right. The variable from above is the left value, so it gets moved 
to the left side of the Assignment node that is now added to the tree to look like this: 

￼  

Continuing, the double token is next with value 3.14. This is the right value for the 
assignment: 

￼  

Moving along, the plus token is next. The parser knows this is the addition operator 
(BinaryOperator+) that takes two values (and is also left associative). This means that 
the addition is added to the tree with the double as its left value: 



￼  

After the plus token, an integer is next, and this becomes the right value for the 
BinaryOperator+ node: 

￼  

Next is the multiply token, another binary operator that is left associative. So it gets the 
integer as its left value: 

￼  

The last token is another integer which becomes the right value for the multiplication: 



 

And that is the final abstract syntax tree for our simple line of code. The Parser has done 
its work and has now created a tree that no longer represents the exact source code but 
is an idealized representation of what the user wrote. 

This tree is then provided to the next component, the Semantic Analyzer. 

  



 

Semantic Analyzer 
The Semantic Analyzer is the real heart of the compiler. Its job is to validate code and 
figure out what the code means. Essentially it validates that the code is semantically 
correct. 

Semantic Analyzer 

With the output from the Parser, all the compiler has is what the user actually typed, 
although converted to a format that is easy for the compiler to digest. 

The Semantic Analyzer knows all the rules regarding the programming language. For 
example, it knows that an Integer can be multiplied with a Double. It knows a String 
cannot be compared with a Double. It knows how to do assignments to variables. It 
knows that Objects can be used with the “New” command. It knows about scope 
information. Everything that the compiler knows to pass the initial syntax check is in 
the Semantic Analyzer. 

If we start with the syntax tree produced by the Parser, the Semantic Analyzer will go 
through it and add information to the syntax tree regarding types. And not just types 
but adds information about things that are implicit in the language. For example, you 
may not think about it but there are implicit conversions that happen should you do 
something like assign a Double to an Integer. 



As you can see below, the Semantic Analyzer has gone through the syntax tree and 
updated it to include when implicit conversions (ImplicitCast) are done. 
￼

 

This updated tree is then handed off to the next part of the compiler, IR Generation. 

  



 

IR Generation 
Now that the Semantic Analyzer has verified that the code is correct and created syntax 
trees, it’s time to talk about IR generation. 

What is IR? 

After the Semantic Analyzer, the next step is to turn the trees that it validated and added 
type information to into a representation that is much closer to what the machine is 
going to generate. This representation is called an intermediate representation (IR). The 
Xojo compiler, when building for 64-bit or ARM, uses LLVM IR. 

The resulting LLVM IR describes the actual control flow of the program and every single 
thing that will be in the final program. In addition to the user-visible code that gets 
executed and the implicit conversions that are now in the trees, it also needs to contain 
all of the hidden, behind the scenes calls like reference counting and introspection 
metadata. 

LLVM IR is actually higher level and more abstract than the actual assembly that it’ll end 
up generating. For example, unlike assembly language, it’s entirely strongly typed and 
the Xojo compiler has to be very precise in what it generates (which is a good thing!). 

  

https://llvm.org/docs/LangRef.html


IR Code Generation 

To get started, here is the abstract syntax tree that was previously created by the 
Semantic Analyzer: 

￼

 

To generate IR, the compiler walks through the above tree, depth first, to get to the leaf 
nodes. Doing this gets us to the BinaryOperator* for the multiple on the lower right side 
of the tree. 

The LLVM IR to multiply those two values (mul) looks like this: 

%1 = mul i32 2, 4 

Now it works backwards through the tree. So, the next item is the implicit cast, which 
has to cast the value that was calculated in the previous command: 

%2 = sitofp i32 %1 to double 

The sitofp IR command means “Signed Integer to Floating Point”. 

https://en.wikipedia.org/wiki/Depth-first_search
https://llvm.org/docs/LangRef.html#mul-instruction
https://llvm.org/docs/LangRef.html#mul-instruction
https://llvm.org/docs/LangRef.html#sitofp-to-instruction
https://llvm.org/docs/LangRef.html#sitofp-to-instruction


Continuing up the tree, the binary operator is next, so it can now grab the left hand-side 
value to apply to the right-hand side value. This is the IR to add the values: 

%3 = fadd double 3.14, %2 

The fadd IR command means “floating point add”. 

And continuing up the tree, the implicit cast is next: 

%4 = fptosi double %3 to i32 

The fptosi IR command means “floating point to signed integer”. 

Lastly, we reach the actual assignment (store) with IR that looks like this: 

store i32 %4, i32* @sum 

Here is the complete IR that gets generated: 

%1 = mul i32 2, 4 

%2 = sitofp i32 %1 to double 

%3 = fadd double 3.14, %2 

%4 = fptosi double %3 to i32 

store i32 %4, i32* @sum 

Reading through this you should now understand why no one wants to manually write 
code at such a low-level. 

This is the last part of the compiler that is considered to be part of the front end. The 
rest of the compiler components belong to the back-end. 

  

https://llvm.org/docs/LangRef.html#fadd-instruction
https://llvm.org/docs/LangRef.html#fadd-instruction
https://llvm.org/docs/LangRef.html#fptosi-to-instruction
https://llvm.org/docs/LangRef.html#fptosi-to-instruction
https://llvm.org/docs/LangRef.html#store-instruction
https://llvm.org/docs/LangRef.html#store-instruction


 

Back-End Overview 
Once the front end has done its work it’s time for the back-end components to take over. 

Back-End 

The components of the back end take the IR that was generated by the last step of the 
front end and emit executable code, which is machine language in the case of Xojo. 

To recap a bit from the LLVM post, for 32-bit x86 apps, Xojo uses its own in-house, 
proprietary compiler first created in 2004/2005. This powerful and fast compiler 
handles the front end and back end, but it does have a couple limitations: it can only 
target 32-bit x86 and it does not do any optimizations. 

Today when you build an iOS app, a 64-bit app for Windows, MacOS or Linux, or an ARM 
app for Raspberry Pi you are using LLVM as the back end to generate your native, 
binary code. 

  



The rest of this book will cover the back-end as it pertains to LLVM. Specifically, the 
components are: 

• Optimizer 
• Loop Unrolling 
• Code Generation 
• Linker 

  



 

Optimizer 
An optimizer “improves” the IR, but that can mean a lot of different things. Improve 
could mean “run faster” or “use less memory”. Or perhaps you want to optimize for 
memory access time because CPUs are so fast it is sometimes more efficient to 
repeatedly calculate something rather than calculate it once, store it and access it later. 

The Optimizer does a series of transformations to the IR code, typically in multiple 
passes. LLVM provides full control over these passes. 

Not all LLVM optimizations provide benefits to Xojo code. We have distilled the many 
complicated optimization settings that are available with LLVM into three options that 
are useful for Xojo code, which you can set from the Shared Build settings: Default, 
Moderate and Aggressive. 

The Default optimization does minimal optimization in order to have the quickest 
compile times. 

The Moderate setting does more optimizations, primarily to reduce the time needed for 
mathematical calculations which results in slightly slower compile times. 

The Aggressive setting does many more mathematical optimizations to further reduce 
calculation time, but also dramatically increases compile time. 



Optimization intends to create something that is equivalent to the original code. The 
result is the same, even if the means to do so might be very different. For example, the 
optimizer may determine that it should do a bit shift to do integer math as a single 
operation rather than a series of add operations. This could result in smaller, faster code 
but may take longer for the optimizer to process the code to make this determination. 

Deciding the “best” optimization for any code is not technically a solvable problem (np-
hard), so optimizers use a combination of “heuristics and hand-waving”. “Hand-waving” 
means the compiler thinks this is correct but has no real way to prove it. And heuristics 
simply means that optimizations that have been known to work in prior code are used 
when similar code is found. 

Constant Folding 

Constant Folding is a simple example of an optimization that can be done. 

This essentially mans the optimizer evaluates constant expressions up front to reduce 
execution time, and save stack and register space. 

For example: 

a = 1 + 2 

can be replaced with: 

a = 3 

Not everything will be quite so obvious in your code, of course. 

Optimization Issues 

There are certain types of code that can make the optimizer’s job more difficult. These 
special Xojo features can challenge an optimizer: 

https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/NP-hardness


• Exception Handling: Makes things difficult because you cannot tell where a function call 
may return. 

• Memory Management: Xojo has deterministic object destruction when variable goes out 
of scope, which forces the optimizer to have to track things more closely. 

• Introspection: The use of Introspection requires lots of metadata to remain available so 
it can be referenced at run-time. 

• Threading: Cooperative thread yielding affects loops and other things. 
• Xojo is a “safe” language and many of the things it does to ensure your app does not 

crash (and instead raise exceptions) such as Nil object checks, stack overflow checks, 
bounds checks, etc. all restrict what the optimizer can do. 

• Plugins: Since these are pre-compiled, they are ignored by the optimizer. 

Continue to learn about a specific optimization: Loop Unrolling. 

  



 

Optimizer Loop Unrolling 
The last post covered optimization in general. In this post you’ll look at a specific 
optimization called “loop unrolling”. 

Loop Unrolling 

Loops are a key optimization point. Unrolling a loop means that you repeat the code 
content of the loop multiple times. It is essentially exactly what you are taught not to do 
when writing code. 

Loop unrolling avoids costly branches. This will not necessarily unroll the entire loop so 
that you get code repeated 100s of times, but it may unroll it a bit so the code repeats a 
few times. 

Modern hardware hates branches because it makes other optimization more difficult, so 
unrolling a loop enables additional optimizations for both the compiler itself and the 
CPU. 

  



Here is a simple loop: 

Dim i As Integer = 0 

While i < 2 

  i = i + 1 

Wend 

Beep 

This gets modeled as a control flow graph: 

 

A control flow graph is a directed graph. 

Looking at the above, the while gets converted to an if. After the integer assignment, 
there is a branch back to the if. If the condition is false, then it branches to the beep. This 
is essentially a Goto, for old-timers. 

But the compiler may also insert stuff on your behalf. For example, Xojo adds Yield 
function calls to enable cooperative threading and these function calls cannot be 
removed by the optimization process. 

https://en.wikipedia.org/wiki/Control_flow_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Goto


 

So to unroll the loop, the idea is that there are only two iterations of the loop which the 
compiler is able to determine. 

So unrolling results in this: 

 

In this short and simple example, the value of the “i” variable is never used so it can be 
discarded, saving both iteration time and storage space. 



With optimization complete, the compiler moves on to Code Generation. 

  



 

Code Generation 
Code generation is one of the last steps of the compiler. This is where the compiler 
emits actual machine code for the IR that was previously created. 

This is the simple code we started with in the Compilers 101: Overview and Lexer 

sum = 3.14 + 2 * 4 // calculation 

It results in a constant value of 11. After the IR is generated and optimized, it can boil 
down to just a single line of machine code, which will vary by processor and 
architecture. Machine code is just binary and not readable, so below is what the 
Assembly code might look like. 

This is the Assembly code for 32-bit ARM: 

movs r0, #11 

This is the Assembly code for ARM64: 

https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Assembly_language


movz w0, #11 

x86 and x86-64 use this Assembly code: 

movl $11, %eax 

Obviously, this is the tricky part of making a multi-platform compiler since Assembly 
code is different between processors and architectures. 

Once you have machine code that the computer can run, the last step is to link all the 
pieces together so that you have an app that the OS can run. This is done by the Linker. 

  



 

Linking and Wrap-up 
The linker is not technically part of the compiler, but it is needed to make a completed 
app. The purpose of the linker is to combine (link) all the various bits and pieces of 
machine code created by the compiler along with the necessary information to create a 
runnable app for the OS. 

Each OS has a way to define an executable file so that it can run it. This typically involves 
some sort of header and a format that describes how the various machine code binary 
components are all combined. This is called an executable type, executable format or 
object file format. 

This is what Xojo uses as the executable format when building 64-bit x86 and ARM apps 
using LLVM: 

• For Linux, Xojo uses ELF (Executable and Linkable Format). This is a common standard 
used by many Unix-like systems. 

• For macOS and iOS, Xojo uses Mach-O. This is the format that was introduced for Cocoa 
apps and dates all the way back to the NeXT days. 

• For Windows, Xojo uses the PE (Portable Executable) format. 

The Linker is responsible for combining all the machine code generated by the compiler 
for your project, adding libraries and generating the appropriate executable 

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable
https://en.wikipedia.org/wiki/Linker_(computing)


format. When the linker has finished, you have a native app that works on the operating 
system. 

For 64-bit x86 and ARM apps using LLVM, Xojo uses the lld linker. 

Wrap-Up 

I hope you found the Compiler Series helpful. And when you need to easily create your 
own cross-platform and multi-platform apps for Windows, macOS, Linux, Raspberry Pi, 
iOS or the web be sure to use Xojo! 

 

 

https://en.wikipedia.org/wiki/LLVM#Linker
http://www.xojo.com/download
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